Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A silver lining

24.04.2015

UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array

The silver used by Beth Gwinn's research group at UC Santa Barbara has value far beyond its worth as a commodity, even though it's used in very small amounts.


DNA controls the size, shape and fluorescent color of the silver clusters themselves.

Credit: UCSB

The group works with the precious metal to create nanoscale silver clusters with unique fluorescent properties. These properties are important for a variety of sensing applications including biomedical imaging.

The team's latest research is published in a featured article in this month's issue of ACS Nano, a journal of the American Chemical Society. The scientists positioned silver clusters at programmed sites on a nanoscale breadboard, a construction base for prototyping of photonics and electronics. "Our 'breadboard' is a DNA nanotube with spaces programmed 7 nanometers apart," said lead author Stacy Copp, a graduate student in UCSB's Department of Physics.

"Due to the strong interactions between DNA and metal atoms, it's quite challenging to design DNA breadboards that keep their desired structure when these new interactions are introduced," said Gwinn, a professor in UCSB's Department of Physics. "Stacy's work has shown that not only can the breadboard keep its shape when silver clusters are present, it can also position arrays of many hundreds of clusters containing identical numbers of silver atoms -- a remarkable degree of control that is promising for realizing new types of nanoscale photonics."

The results of this novel form of DNA nanotechnology address the difficulty of achieving uniform particle sizes and shapes. "In order to make photonic arrays using a self-assembly process, you have to be able to program the positions of the clusters you are putting on the array," Copp explained. "This paper is the first demonstration of this for silver clusters."

The colors of the clusters are largely determined by the DNA sequence that wraps around them and controls their size. To create a positionable silver cluster with DNA-programmed color, the researchers engineered a piece of DNA with two parts: one that wraps around the cluster and the other that attaches to the DNA nanotube. "Sticking out of the nanotube are short DNA strands that act as docking stations for the silver clusters' host strands," Copp explained.

The research group's team of graduate and undergraduate researchers is able to tune the silver clusters to fluoresce in a wide range of colors, from blue-green all the way to the infrared -- an important achievement because tissues have windows of high transparency in the infrared. According to Copp, biologists are always looking for better dye molecules or other infrared-emitting objects to use for imaging through a tissue.

"People are already using similar silver cluster technologies to sense mercury ions, small pieces of DNA that are important for human diseases, and a number of other biochemical molecules," Copp said. "But there's a lot more you can learn by putting the silver clusters on a breadboard instead of doing experiments in a test tube. You get more information if you can see an array of different molecules all at the same time."

The modular design presented in this research means that its step-by-step process can be easily generalized to silver clusters of different sizes and to many types of DNA scaffolds. The paper walks readers through the process of creating the DNA that stabilizes silver clusters. This newly outlined protocol offers investigators a new degree of control and flexibility in the rapidly expanding field of nanophotonics.

The overarching theme of Copp's research is to understand how DNA controls the size and shape of the silver clusters themselves and then figure out how to use the fact that these silver clusters are stabilized by DNA in order to build nanoscale arrays.

"It's challenging because we don't really understand the interactions between silver and DNA just by itself," Copp said. "So part of what I've been doing is using big datasets to create a bank of working sequences that we've published so other scientists can use them. We want to give researchers tools to design these types of structures intelligently instead of just having to guess."

The paper's acknowledgements include a dedication to "those students who lost their lives in the Isla Vista tragedy and to the courage of the first responders, whose selfless actions saved many lives."

Media Contact

Julie Cohen
julie.cohen@ucsb.edu
805-893-7220

 @ucsantabarbara

http://www.ucsb.edu 

Julie Cohen | EurekAlert!

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>