Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A big leap toward lowering the power consumption of microprocessors

20.01.2012
Computer scientists conduct the first systematic power profiles of microprocessors

The first systematic power profiles of microprocessors could help lower the energy consumption of both small cell phones and giant data centers, report computer science professors from The University of Texas at Austin and the Australian National University.

Their results may point the way to how companies like Google, Apple, Intel and Microsoft can make software and hardware that will lower the energy costs of very small and very large devices.

"The less power cell phones draw, the longer the battery will last," says Kathryn McKinley, professor of computer science at The University of Texas at Austin. "For companies like Google and Microsoft, which run these enormous data centers, there is a big incentive to find ways to be more power efficient. More and more of the money they're spending isn't going toward buying the hardware, but toward the power the datacenters draw."

McKinley says that without detailed power profiles of how microprocessors function with different software and different chip architectures, companies are limited in terms of how well they can optimize for energy usage.

The study she conducted with Stephen M. Blackburn of The Australian National University and their graduate students is the first to systematically measure and analyze application power, performance, and energy on a wide variety of hardware.

This work was recently invited to appear as a Research Highlight in the Communications of the Association for Computer Machinery (CACM). It's also been selected as one of this year's "most significant research papers in computer architecture based on novelty and long-term impact" by the journal IEEE Micro.

"We did some measurements that no one else had done before," says McKinley. "We showed that different software, and different classes of software, have really different power usage."

McKinley says that such an analysis has become necessary as both the culture and the technologies of computing have shifted over the past decade.

Energy efficiency has become a greater priority for consumers, manufacturers and governments because the shrinking of processor technology has stopped yielding exponential gains in power and performance. The result of these shifts is that hardware and software designers have to take into account tradeoffs between performance and power in a way they did not ten years ago.

"Say you want to get an application on your phone that's GPS-based," says McKinley, "In terms of energy, the GPS is one of the most expensive functions on your phone. A bad algorithm might ping your GPS far more than is necessary for the application to function well. If the application writer could analyze the power profile, they would be motivated to write an algorithm that pings it half as often to save energy without compromising functionality."

McKinley believes that the future of software and hardware design is one in which power profiles become a consideration at every stage of the process.

Intel, for instance, has just released a chip with an exposed power meter, so that software developers can access some information about the power profiles of their products when run on that chip. McKinley expects that future generations of chips will expose even more fine-grained information about power usage.

Software developers like Microsoft (where McKinley is spending the next year, while taking a leave from the university) are already using what information they have to inform their designs. And device manufacturers are testing out different architectures for their phones or tablets that optimize for power usage.

McKinley says that even consumers may get information about how much power a given app on their smart phone is going to draw before deciding whether to install it or not.

"In the past, we optimized only for performance," she says. "If you were picking between two software algorithms, or chips, or devices, you picked the faster one. You didn't worry about how much power it was drawing from the wall socket. There are still many situations today—for example, if you are making software for stock market traders—where speed is going to be the only consideration. But there are a lot of other areas where you really want to consider the power usage."

Daniel Oppenheimer | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>