Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Surrogates' aid design of complex parts and controlling video games

11.05.2011
Researchers have defined a new class of software, calling it "surrogate interaction," which enables designers and video gamers to more easily change features of complex objects like automotive drawings or animated characters.

The new interactive approach is being used commercially and in research but until now has not been formally defined, and doing so could boost its development and number of applications, said Ji Soo Yi, an assistant professor of industrial engineering at Purdue University.

Conventional computer-aided design programs often rely on the use of numerous menus containing hundreds of selection options. The surrogate interaction uses a drawing that resembles the real object to provide users a more intuitive interface than menus.

The Purdue researchers have investigated the characteristics of surrogate interaction, explored potential ways to use it in design applications, developed software to test those uses and suggested the future directions of the research.

Surrogates are interactive graphical representations of real objects, such as a car or a video game character, with icons on the side labeling specific parts of the figure, said Niklas Elmqvist, a Purdue assistant professor of electrical and computer engineering.

"If you click on one label, you change color, if you drag a border you change its width. Anything you do to the surrogate affects the actual objects you are working with," he said. "The way it is now, say I'm working on a car design and wanted to move the rear wheels slightly forward, or I want to change an object's color or thickness of specific parts. I can't make those changes to the drawing directly but have to search in menus and use arcane commands."

Several techniques have been developed over the years to address these issues.

"But they are all isolated and limited efforts with no coherent underlying principle," Elmqvist said. "We propose the notion of surrogate interaction to unify other techniques that have been developed. We believe that formalizing this family of interaction techniques will provide an additional and powerful interface design alternative, as well as uncover opportunities for future research."

The approach also allows video gamers to change attributes of animated characters.

"For computer games, especially role playing games, you may have a warrior character that has lots of different armor and equipment," Elmqvist said. "Usually you can't interact with the character itself. If you want to put in a new cloak or a sword you have to use this complex system of menus."

Research findings are detailed in a paper presented during the Association for Computing Machinery's CHI Conference on Human Factors in Computing Systems through May 12 in Vancouver, British Columbia. The research paper was written by industrial engineering doctoral student Bum chul Kwon, electrical and computer engineering doctoral student Waqas Javed, Elmqvist and Yi.

Kwon and Yi helped theorize the idea of surrogate interaction with relation to previous models of interaction.

The method also makes it possible to manipulate more than one object simultaneously.

"In computer strategy games you might be moving an army or maybe five infantry soldiers, and you want to take a building," Elmqvist said. "Using our technique you would let a surrogate, one soldier, represent all of the soldiers. Any commands you issue for the surrogate applies to all five soldiers."

Current video game technology lacks an easy-to-use method to issue such simultaneous commands to all members of a group.

The method also could be used to make maps interactive.

"In maps, usually you have a legend that says this color means forest and this symbol means railroad tracks and so on," Elmqvist said. "You can see these symbols in the map, but you can't interact with them. In the new approach, you have a surrogate of the map, and in this surrogate you can interact with these legends. For example, you could search for interstate highways, bridges, public parks."

Writer: Emil Venere, 765-494-4709, venere@purdue.edu
Sources: Niklas Elmqvist, 765 494-0364, elm@purdue.edu
Ji Soo Yi, 765-496-7213, yij@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>