Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Surrogates' aid design of complex parts and controlling video games

11.05.2011
Researchers have defined a new class of software, calling it "surrogate interaction," which enables designers and video gamers to more easily change features of complex objects like automotive drawings or animated characters.

The new interactive approach is being used commercially and in research but until now has not been formally defined, and doing so could boost its development and number of applications, said Ji Soo Yi, an assistant professor of industrial engineering at Purdue University.

Conventional computer-aided design programs often rely on the use of numerous menus containing hundreds of selection options. The surrogate interaction uses a drawing that resembles the real object to provide users a more intuitive interface than menus.

The Purdue researchers have investigated the characteristics of surrogate interaction, explored potential ways to use it in design applications, developed software to test those uses and suggested the future directions of the research.

Surrogates are interactive graphical representations of real objects, such as a car or a video game character, with icons on the side labeling specific parts of the figure, said Niklas Elmqvist, a Purdue assistant professor of electrical and computer engineering.

"If you click on one label, you change color, if you drag a border you change its width. Anything you do to the surrogate affects the actual objects you are working with," he said. "The way it is now, say I'm working on a car design and wanted to move the rear wheels slightly forward, or I want to change an object's color or thickness of specific parts. I can't make those changes to the drawing directly but have to search in menus and use arcane commands."

Several techniques have been developed over the years to address these issues.

"But they are all isolated and limited efforts with no coherent underlying principle," Elmqvist said. "We propose the notion of surrogate interaction to unify other techniques that have been developed. We believe that formalizing this family of interaction techniques will provide an additional and powerful interface design alternative, as well as uncover opportunities for future research."

The approach also allows video gamers to change attributes of animated characters.

"For computer games, especially role playing games, you may have a warrior character that has lots of different armor and equipment," Elmqvist said. "Usually you can't interact with the character itself. If you want to put in a new cloak or a sword you have to use this complex system of menus."

Research findings are detailed in a paper presented during the Association for Computing Machinery's CHI Conference on Human Factors in Computing Systems through May 12 in Vancouver, British Columbia. The research paper was written by industrial engineering doctoral student Bum chul Kwon, electrical and computer engineering doctoral student Waqas Javed, Elmqvist and Yi.

Kwon and Yi helped theorize the idea of surrogate interaction with relation to previous models of interaction.

The method also makes it possible to manipulate more than one object simultaneously.

"In computer strategy games you might be moving an army or maybe five infantry soldiers, and you want to take a building," Elmqvist said. "Using our technique you would let a surrogate, one soldier, represent all of the soldiers. Any commands you issue for the surrogate applies to all five soldiers."

Current video game technology lacks an easy-to-use method to issue such simultaneous commands to all members of a group.

The method also could be used to make maps interactive.

"In maps, usually you have a legend that says this color means forest and this symbol means railroad tracks and so on," Elmqvist said. "You can see these symbols in the map, but you can't interact with them. In the new approach, you have a surrogate of the map, and in this surrogate you can interact with these legends. For example, you could search for interstate highways, bridges, public parks."

Writer: Emil Venere, 765-494-4709, venere@purdue.edu
Sources: Niklas Elmqvist, 765 494-0364, elm@purdue.edu
Ji Soo Yi, 765-496-7213, yij@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>