Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Nanoresonators' might improve cell phone performance

31.08.2012
Researchers have learned how to mass produce tiny mechanical devices that could help cell phone users avoid the nuisance of dropped calls and slow downloads. The devices are designed to ease congestion over the airwaves to improve the performance of cell phones and other portable devices.
"There is not enough radio spectrum to account for everybody's handheld portable device," said Jeffrey Rhoads, an associate professor of mechanical engineering at Purdue University.

The overcrowding results in dropped calls, busy signals, degraded call quality and slower downloads. To counter the problem, industry is trying to build systems that operate with more sharply defined channels so that more of them can fit within the available bandwidth.

"To do that you need more precise filters for cell phones and other radio devices, systems that reject noise and allow signals only near a given frequency to pass," said Saeed Mohammadi, an associate professor of electrical and computer engineering who is working with Rhoads, doctoral student Hossein Pajouhi and other researchers.
The Purdue team has created devices called nanoelectromechanical resonators, which contain a tiny beam of silicon that vibrates when voltage is applied. Researchers have shown that the new devices are produced with a nearly 100 percent yield, meaning nearly all of the devices created on silicon wafers were found to function properly.

"We are not inventing a new technology, we are making them using a process that's amenable to large-scale fabrication, which overcomes one of the biggest obstacles to the widespread commercial use of these devices," Rhoads said.

Findings are detailed in a research paper appearing online in the journal IEEE Transactions on Nanotechnology. The paper was written by doctoral students Lin Yu and Pajouhi, Rhoads, Mohammadi, and graduate student Molly Nelis.

In addition to their use as future cell phone filters, such nanoresonators also could be used for advanced chemical and biological sensors in medical and homeland-defense applications and possibly as components in computers and electronics.

The devices are created using silicon-on-insulator, or SOI, fabrication - the same method used by industry to manufacture other electronic devices. The resonators can be readily integrated into electronic circuits and systems because SOI is compatible with complementary metal–oxide–semiconductor technology, or CMOS, another mainstay of electronics manufacturing used to manufacture computer chips.

The resonators are in a class of devices called nanoelectromechanical systems, or NEMS.

The new device is said to be "highly tunable," which means it could enable researchers to overcome manufacturing inconsistencies that are common in nanoscale devices.

"Because of manufacturing differences, no two nanoscale devices perform the same rolling off of the assembly line," Rhoads said. "You must be able to tune them after processing, which we can do with these devices."

The heart of the device is a silicon beam attached at two ends. The beam, which vibrates in the center like a jump rope, is about two microns long and 130 nanometers wide, or about 1,000 times thinner than a human hair. Applying alternating current to the beam causes it to selectively vibrate side-to-side or up and down and also allows the beam to be finely adjusted, or tuned.

The nanoresonators were shown to control their vibration frequencies better than other resonators. The devices might replace electronic parts to achieve higher performance and lower power consumption.
"A vivid example is a tunable filter," Mohammadi said. "It is very difficult to make a good tunable filter with transistors, inductors and other electronic components, but a simple nanomechanical resonator can do the job with much better performance and at a fraction of the power."

Not only are they more efficient than their electronic counterparts, he said, but they also are more compact.

"Because the devices are tiny and the fabrication has almost a 100 percent yield, we can pack millions of these devices in a small chip if we need to," Mohammadi said. "It's too early to know exactly how these will find application in computing, but since we can make these tiny mechanical devices as easily as transistors, we should be able to mix and match them with each other and also with transistors in order to achieve specific functions. Not only can you put them side-by-side with standard computer and electronic chips, but they tend to work with near 100 percent reliability."

The new resonators could provide higher performance than previous MEMS, or microelectromechanical systems.

In sensing application, the design enables researchers to precisely measure the frequency of the vibrating beam, which changes when a particle lands on it. Analyzing this frequency change allows researchers to measure minute masses. Similar sensors are now used to research fundamental scientific questions. However, recent advances may allow for reliable sensing with portable devices, opening up a range of potential applications, Rhoads said.

Such sensors have promise in detecting and measuring constituents such as certain proteins or DNA for biological testing in liquids, gases and the air, and the NEMS might find applications in breath analyzers, industrial and food processing, national security and defense, and food and water quality monitoring.
"The smaller your system, the smaller the mass you can measure," Rhoads said. "Most of the field-deployable sensors we've seen in the past have been based on microscale technologies, so this would be hundreds or thousands of times smaller, meaning we should eventually be able to measure things that much smaller."

The work is based at the Dynamic Analysis of Micro- and Nanosystems Laboratory at the Birck Nanotechnology Center in Purdue's Discovery Park. Other faculty members and graduate students also use the specialized facility.

The researchers have filed a patent application for the concept. The research is funded by the National Science Foundation.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Jeffrey Rhoads, 765-494-5630, jfrhoads@purdue.edu

Saeed Mohammadi, 765-494-3557, saeedm@purdue.edu

Note to Journalists: An electronic copy of the research paper is available from Emil Venere, 765-494-4709, venere@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>