Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Culturomics 2.0' forecasts human behavior by supercomputing global news

07.09.2011
A paper published yesterday in the peer-reviewed journal First Monday combines advanced supercomputing with a quarter-century of worldwide news to forecast and visualize human behavior, from civil unrest to the movement of individuals.

The paper, titled "Culturomics 2.0: Forecasting Large-Scale Human Behavior Using Global News Media Tone in Time and Space," uses the tone and location of news coverage from across the world to forecast country stability (including retroactively predicting the recent Arab Spring), estimate Osama Bin Laden's final location as a 200-kilometer radius around Abbottabad, and uncover the six world civilizations of the global news media. The research also demonstrates that the news is indeed becoming more negative and even visualizes global human societal conflict and cooperation over the last quarter century.

Using the large shared-memory supercomputer Nautilus, Kalev Leetaru of the University of Illinois in Urbana-Champaign combined three massive news archives totaling more than 100 million articles worldwide to explore the global consciousness of the news media. The complete New York Times from 1945 to 2005, the unclassified edition of Summary of World Broadcasts from 1979 to 2010, and an archive of English-language Google News articles spanning 2006 to 2011 were used to capture a cross-section of the U.S. media spanning half a century and the global media over a quarter-century.

Advanced tonal, geographic, and network analysis methods were used to produce a network 2.4 petabytes in size containing more than 10 billion people, places, things, and activities connected by over 100 trillion relationships, capturing a cross-section of Earth from the news media. A subset of findings from this analysis were then reproduced for this study using more traditional methods and smaller-scale workflows that offer a model for a new class of digital humanities research that explores how the world views itself.

Funded by the National Science Foundation and managed by the University of Tennessee's Remote Data Analysis and Visualization Center, the Nautilus supercomputer is a part of the National Institute for Computational Sciences network of advanced computing resources at Oak Ridge National Laboratory.

Read more about results from this research in the full paper at http://www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/3663/3040. A highlight about the research is also available at www.utk.nics.edu.

About NICS:

The National Institute for Computational Sciences (NICS) is a joint effort of the University of Tennessee and Oak Ridge National Laboratory. NICS was founded in 2007, and is supported by the National Science Foundation's Extreme Science and Engineering Discovery Environment program, and is located at Oak Ridge National Laboratory, home to the world's most powerful computing complex.

About RDAV:

RDAV is the University of Tennessee's Center for Remote Data Analysis and Visualization, sponsored by the National Science Foundation as part of the Extreme Science and Engineering Discovery Environment program. RDAV is a partnership between the National Institute for Computational Sciences, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, the University of Wisconsin, and the National Center for Supercomputing Applications at the University of Illinois.

Kalev Leetaru | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>