Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF's 1st Science Policy Conference ponders questions on ERA, Global Research Area

29.11.2007
Never mind the politics of a superstate, just consider the scientific challenge that faces Europe. Should researchers co-operate or compete? Should there be a master plan, prepared by the ministers, funding agencies and chiefs of European science, or should Europe's commissioners encourage imagination and invention at the laboratory bench? Should Europe's science managers favour basic or blue skies research, or worry about backing science that will make money? Should research chiefs try to pick winners, or should they give chance and natural curiosity free rein and a generous helping hand and see what surprises emerge?

How, in the face of many differing national bureaucracies, research traditions and peer review practices, should they build a new kind of community of knowledge and discovery? How should they encourage partnerships that make the best of the intellectual firepower of researchers in 27 member countries and with partnerships in 17 non-European countries including the US, India, China, Brazil, Korea, Japan and even New Zealand? Or, to put it another way, is the European Research Area just a first step towards a global research area: in acronym terms a move from ERA to GLOREA?

The European Science Foundation (ESF) opened its first ever science policy conference in Strasbourg on November 28 and wrestled with questions that, for the moment, could only be answered with other questions. Should researchers be directed to tackle the obvious problems that face society - the menace of climate change, for instance, or the problem of maintaining health in an increasingly elderly populace? Or should researchers be encouraged to explore possibilities that no one had ever imagined?

"More importantly, more difficult, how do you apply science to the possibilities that might be there but you don't really know about," said Ian Halliday, President of the ESF, and a theoretical particle physicist. "My favourite example is the Americans, taking to, and grabbing, everybody's technology to make the Internet work. Think of the impact on society. That wasn't a solution to societal need. That was: there's something interesting over here that's more than just mature science. How do we make it work, how do we turn it into something."

Take the problem of what used to be considered healthy competition, but in a close-knit Europe looks increasingly like duplication of effort, or fragmentation of research funds. "What do I mean by duplication? I mean the worry in the UK or Sweden or wherever that you are funding something that is really identical to something funded in Italy or whatever. Again let me use my background. The UK had the best dark matter experiment in Europe. So did France and so did Italy. Those cannot all be true. There is real suspicion that the money could have been spent better. And that is repeated many times across Europe. So how do we get that kind of visibility and transparency?"

Dark matter makes up more than 20 per cent of the universe. All the stars and all the galaxies account for only about 4 per cent of creation. More than 70 per cent of the mass of the universe is concealed in a phenomenon sometimes called dark energy, or quintessence, or antigravity: a force so mysterious that no physicist has any confidence that it will ever be understood. Most of the galaxies, however, are embedded in an invisible but massive substance known as dark matter, and most researchers believe that, sooner or later, they will begin to identify it. Professor Halliday's point is not that any one experiment is more likely to succeed; it is that to make the best of its intellectual effort, a European research council should have been able to consider all three projects, and endorse one of them. The challenge was to get the most money to the best scientists to produce the fastest and most effective research. "I suspect much talent in Europe does not have that kind of funding," he said.

Colin Blakemore, an Oxford neuroscientist and until October head of the UK's medical research council, had a different set of questions about the new shape of scientific research in Europe. "One shouldn't lose sight of the broader goal: that integration and co-operation are not ends in themselves. They are mean to the greater benefit of science. Or are they always? Is it absolutely essential that to be successful in science Europe must have enforced trans-national co-operation? It is worth reflecting on that," he said.

Sometimes, that question was simply answered. Some scientific ventures -the huge atom-smashing collider at CERN in Geneva, for example, the human genome project and the European bioinformatics institute - were simply too big and too costly for any single university or country to attempt. There were clinical trials that worked best as transnational co-operations, and vaccine partnerships that demanded international effort. Space programmes and fusion research were also obvious examples of successful and necessary co-operations.

"The examples are there but notice that in each case one can trace the need for co-operation to a scientific objective and goal rather than enforced co-operation for its own sake," Prof Blakemore said. "We have to be very cautious, in recognising that the driver for co-operation is not co-operation itself, but it is the goal of supporting science better where co-operation is essential."

To download photos from the conference please visit http://www.esf.org/media-centre/photogallery/esf-science-policy-conference.html

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Event News:

nachricht International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open
20.03.2017 | Leibniz-Institut für ökologische Raumentwicklung e. V.

nachricht CONNECT 2017: International congress on connective tissue
14.03.2017 | Universität Ulm

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>