Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF's 1st Science Policy Conference ponders questions on ERA, Global Research Area

29.11.2007
Never mind the politics of a superstate, just consider the scientific challenge that faces Europe. Should researchers co-operate or compete? Should there be a master plan, prepared by the ministers, funding agencies and chiefs of European science, or should Europe's commissioners encourage imagination and invention at the laboratory bench? Should Europe's science managers favour basic or blue skies research, or worry about backing science that will make money? Should research chiefs try to pick winners, or should they give chance and natural curiosity free rein and a generous helping hand and see what surprises emerge?

How, in the face of many differing national bureaucracies, research traditions and peer review practices, should they build a new kind of community of knowledge and discovery? How should they encourage partnerships that make the best of the intellectual firepower of researchers in 27 member countries and with partnerships in 17 non-European countries including the US, India, China, Brazil, Korea, Japan and even New Zealand? Or, to put it another way, is the European Research Area just a first step towards a global research area: in acronym terms a move from ERA to GLOREA?

The European Science Foundation (ESF) opened its first ever science policy conference in Strasbourg on November 28 and wrestled with questions that, for the moment, could only be answered with other questions. Should researchers be directed to tackle the obvious problems that face society - the menace of climate change, for instance, or the problem of maintaining health in an increasingly elderly populace? Or should researchers be encouraged to explore possibilities that no one had ever imagined?

"More importantly, more difficult, how do you apply science to the possibilities that might be there but you don't really know about," said Ian Halliday, President of the ESF, and a theoretical particle physicist. "My favourite example is the Americans, taking to, and grabbing, everybody's technology to make the Internet work. Think of the impact on society. That wasn't a solution to societal need. That was: there's something interesting over here that's more than just mature science. How do we make it work, how do we turn it into something."

Take the problem of what used to be considered healthy competition, but in a close-knit Europe looks increasingly like duplication of effort, or fragmentation of research funds. "What do I mean by duplication? I mean the worry in the UK or Sweden or wherever that you are funding something that is really identical to something funded in Italy or whatever. Again let me use my background. The UK had the best dark matter experiment in Europe. So did France and so did Italy. Those cannot all be true. There is real suspicion that the money could have been spent better. And that is repeated many times across Europe. So how do we get that kind of visibility and transparency?"

Dark matter makes up more than 20 per cent of the universe. All the stars and all the galaxies account for only about 4 per cent of creation. More than 70 per cent of the mass of the universe is concealed in a phenomenon sometimes called dark energy, or quintessence, or antigravity: a force so mysterious that no physicist has any confidence that it will ever be understood. Most of the galaxies, however, are embedded in an invisible but massive substance known as dark matter, and most researchers believe that, sooner or later, they will begin to identify it. Professor Halliday's point is not that any one experiment is more likely to succeed; it is that to make the best of its intellectual effort, a European research council should have been able to consider all three projects, and endorse one of them. The challenge was to get the most money to the best scientists to produce the fastest and most effective research. "I suspect much talent in Europe does not have that kind of funding," he said.

Colin Blakemore, an Oxford neuroscientist and until October head of the UK's medical research council, had a different set of questions about the new shape of scientific research in Europe. "One shouldn't lose sight of the broader goal: that integration and co-operation are not ends in themselves. They are mean to the greater benefit of science. Or are they always? Is it absolutely essential that to be successful in science Europe must have enforced trans-national co-operation? It is worth reflecting on that," he said.

Sometimes, that question was simply answered. Some scientific ventures -the huge atom-smashing collider at CERN in Geneva, for example, the human genome project and the European bioinformatics institute - were simply too big and too costly for any single university or country to attempt. There were clinical trials that worked best as transnational co-operations, and vaccine partnerships that demanded international effort. Space programmes and fusion research were also obvious examples of successful and necessary co-operations.

"The examples are there but notice that in each case one can trace the need for co-operation to a scientific objective and goal rather than enforced co-operation for its own sake," Prof Blakemore said. "We have to be very cautious, in recognising that the driver for co-operation is not co-operation itself, but it is the goal of supporting science better where co-operation is essential."

To download photos from the conference please visit http://www.esf.org/media-centre/photogallery/esf-science-policy-conference.html

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Event News:

nachricht ASEAN Member States discuss the future role of renewable energy
17.10.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht World Health Summit 2017: International experts set the course for the future of Global Health
10.10.2017 | World Health Summit

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>