Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radioactivity: Discover the lowest amounts with new methods

17.09.2008
PTB invitation to international conference on environmental radioactivity on 22nd September

Detecting ever lower amounts of ionising radiation with ever better methods – scientists have had this goal since the start of the nuclear age.

In addition to natural radiation, mankind is exposed to a multitude of other sources of radiation which result from the military and technical use of radioactive substances. To protect health, but also for technical and medical applications, it is necessary to determine even the smallest amounts of radionuclides with high precision.

On the invitation of the Physikalisch-Technische Bundesanstalt (PTB), scientists from 27 countries are meeting from 22nd to 26th September 2008 to exchange ideas about new measurement and analytical techniques and possible ways of applying them: at the "5th International Conference on Radionuclide Metrology Low-Level Radioactivity Measurement Techniques".

PTB scientists contribute to this international exchange with three dissertations:

1. The German thoron progeny chamber – Concept and Application

Abstract: For the measurement of the thoron progenies, a reference field has been estab-lished within the scope of a project funded by the Federal Ministry of Environment, Nature Protection Reactor Safety. This field consists of an air-conditioned walk-in testing chamber in which the environmental parameters temperature, air humidity and aerosol content can be adjusted and controlled. Analogue to the radon reference chamber, Carnauba wax aerosol is used as model aerosol.

The activity concentrations of thoron and of the thoron progenies shall be adjusted by means of several open exhalation sources with 228Th which are distributed in the chamber. Homogeneity of the environmental parameters and of the activity con-centrations of thoron and its progenies in the chamber is ensured by a special ventilation system. With this system, a compromise has been made between high circulation rates due to the low half-life of thoron, on the one hand, and low flow velocities due to the otherwise possible separation of the aerosol particle at surfaces of the chamber, on the other hand. The thoron progenies which mainly accumulate on the aerosol particles, shall be measured analogously by measuring the radon progenies after their separation by means of wire meshes (free fraction) or filters (fraction attached on aerosol partiles) in a follow-up product measuring set-up.

By simultaneous spectrometry of the alpha- and gamma-radiation emitted from the sample, quantifying of all thoron progenies as well as traceability of the measurement to the national activity standard is guaranteed.

2. Improvements of low-level gamma-ray Spectrometry Systems at UDO

Abstract: The Physikalisch-Technische Bundesanstalt (PTB), the German metrology institute, operates various low-background gamma-ray spectrometry systems at the underground laboratory (UDO) in the Asse salt mine, near Braunschweig. The experiences gained with these detector systems within ten years of operation lead to various changes and improve-ments of the experimental installations. In 2004, the whole UDO facility had to be moved within the Asse mine from its former location at a depth of 925 m to the present depth of 490 m. At its new location, the radon activity concentration in air (about 60 Bq/m3) is by a factor of three higher than at the 925 m level.

Therefore, it became necessary to signifi-cantly improve the shielding against radon, at least for the most sensitive detector system. This radon shield consist of an almost air-tight box which surrounds the whole passive shielding (the latter is composed of 20 cm of lead and 10 cm of electrolytic copper). In addi-tion, an improved nitrogen flashing of the inner volume of the detector chamber was realized by changes of the design. At the same time, the end-cap of this detector was exchanged with the aim to reduce the inherent background of the system (especially from 40K). The background characteristics achieved with an electrolytic copper end-cap equipped with a thin carbon epoxy entrance window are compared with results obtained after the change to a low-activity aluminum end-cap operated at the same detector.

In this paper, the performance of the low-level gamma-ray spectrometry systems at UDO will be described. It focuses on technical aspects and the experiences gained after changes and improvements of the most sensitive detector had been performed.

3. On Monte Carlo Simulation of HPGE Gamma-Spectrometry Systems

Abstract: A complete calibration of gamma-spectrometry systems cannot be achieved exclu-sively on the basis of experimental measurements. Comprehensive experimental calibration is especially difficult in the case of low-level measurements, when volume sources, for which a proper standard is unavailable, are measured in close to detector high efficiency configura-tions, favoring important nuclide specific coincidence-summing effects. In such cases Monte Carlo simulation methods are among the best tools available for complementing experimen-tal calibration.

A recent intercomparison of Monte Carlo codes used in gamma-ray spectrometry revealed surprising differences between the results of different codes [1]. In this work our experience in using GESPECOR and GEANT 3.21 to solve problems in gamma-ray spectrometry (with emphasis on low-level measurements) is reviewed. The focus is on the problems resulting from differences between the two codes. Several topics related to the physics database, to the simulation parameters and algorithms and to problem definition are discussed.

Differences in interaction cross sections applied in the two programs are pointed out and the consequences on the simulation results in various measurement configurations are discussed.

Imke Frischmuth | alfa
Further information:
http://www.ptb.de
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080916.html

More articles from Event News:

nachricht Munich conference on asteroid detection, tracking and defense
13.06.2018 | Technische Universität München

nachricht 2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”
08.06.2018 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>