Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans acidify much faster than ever before in Earth’s history

27.09.2010
Conference: More than 200 scientists from all over Europe discuss increasing ocean acidification

For four days the topic of ocean acidification will be the focus of marine and polar research. The Alfred Wegener Institute for Polar and Marine Research in the Hemholtz Association is hosting the conference and expects more than 200 scientists from all over Europe at the Conference Center Bremerhaven.

The greenhouse gas carbon dioxide not only leads to global climate warming, but also to increasing acidification of the oceans. Next week scientists will discuss the most recent results on ocean acidification at the first joint meeting of the three large coordinated projects, EPOCA (European Project on Ocean Acidification), the German project BIOACID (Biological Impacts of Ocean ACIDification) and UK project UKOARP (UK Ocean Acidification Research Program).

The oceans take up about a third of the carbon dioxide (CO2) produced by the combustion of fossil fuel every year. When carbon dioxide dissolves in seawater, carbonic acid forms and the acidity (pH value) of the water decreases. Since the beginning of industrialisation the CO2 absorbed by the sea has led to an increase in surface ocean acidity by 30 percent. As a consequence, the concentration of carbonate ions in seawater is declining. Many marine organisms such as calcareous algae, mussels and snails have difficulties in forming their shells or skeletons. As a result of this, entire ecosystems such as coral reefs may be affected.

In conjunction with the three large-scale research projects, at national and international level the Alfred Wegener Institute is examining the impacts of ocean acidification, particularly on the biotic communities in the Arctic Ocean.

The polar regions are especially sensitive to ocean acidification. “The solubility of CO2 is exceptionally high due to the low sea water temperatures in the polar regions, so that carbonate ion concentrations, in turn, is also lower there and this shortage may be especially hard on the organisms living there. As many metabolic processes proceed more slowly at cold temperatures, the ability of polar organisms to compensate for an increased CO2 concentration may be restricted further,” says Prof. Hans-Otto Pörtner, animal physiologist at the Alfred Wegener Institute and co-coordinator of the BIOACID large-scale research project.

The specific processes in marine bacteria were examined by researchers of the Alfred Wegener Institute during a voyage of the research vessel “Polarstern” to the Arctic. Their latest results substantiated their current assumptions. “Acidified water stimulated bacterial production considerably and led to increased consumption of organic carbon compounds, which may reinforce release of CO2,” explained Dr. Anja Engel. Hardly any research has been conducted to date on the impact of climate change on the complex interrelationships of the marine carbon cycle and on the role microorganisms will play for the future CO2 balance in the Arctic Ocean, she adds. “The meeting of the three large-scale research projects offers a good forum for exchanging data and discussing joint approaches for solutions,” stated Dr. Anja Engel.

To completely understand the (longer-term) impacts of increasing ocean acidification, it is of crucial importance for researchers to take a look back at past events. After all, sediments in the ocean form a significant archive of the Earth’s history, comparable to books in a library. “Those who understand the language of sediments will be able to examine the evolution of the environment and climate conditions in the Earth’s history there,” says Prof. Jelle Bijma, marine biogeoscientist at the Alfred Wegener Institute. Ocean acidification events have left their “fingerprints” in the sediment at different places in the Earth’s history, such as during the transition from the Permian to the Triassic period 251 million years and during the Palaeocene/Eocene transition 55 million years ago. However, acidification in the past was always triggered by natural events. “Nowadays it is caused by the immense release of carbon dioxide due to human activity and the sea is less and less able to buffer these disruptions,” states Bijma. Furthermore, he adds, we have to realise that acidification events are almost always accompanied by global warming, increased stratification of the oceans and a reduction in the oxygen concentration of the deep sea.

“It is not the first time in the history of the Earth that the oceans have acidified, but a disturbing aspect now is that it is occurring much faster than ever before. As a consequence, not only the pH value drops, but the saturation state of the oceans with respect to carbonate falls as well. Times are tough, especially for calcifying organisms,” Bijma claims. Scientists will continue to investigate how various calciumcarbonate-producing marine organisms react to acidification and why their reactions vary and discuss their thoughts on this topic at the conference in Bremerhaven.

The three projects

BIOACID (Biological Impacts of Ocean ACIDification) is a coordinated project that investigates the impacts of ocean acidification on marine biotic communities since its launch in 2009. A total of 14 research institutes and universities from all over Germany are involved in the project funded by the Federal Ministry for Education and Research (BMBF) for three years to an amount of 8.5 million euros. The Leibniz Institute for Marine Sciences (IFM-GEOMAR) in Kiel is responsible for project coordination and management. The Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association is the co-coordinator.

The integrated project EPOCA (European Project on OCean Acidification) was launched in May 2008 with the overall goal to fill the numerous gaps in our understanding of ocean acidification and its consequences. The EPOCA consortium brings together more than 100 researchers from 32 institutes and 10 European countries. The research of this four-year long project is partly funded by the European Commission.

UKOARP (UK Ocean Acidification Research Program) is UK’s first research programme to investigate the impacts of ocean acidification. Launched in 2010 it involves 101 scientists from 21 of the UK’s top scientific institutions. The UK Ocean Acidification Research Programme consists of several projects working together to investigate different aspects of this global issue.

Contacts and more information on EPOCA, BIOACID and UKOARP please see project web sites:
http://www.epoca-project.eu
http://www.bioacid.de
http://www.oceanacidification.org.uk/
Notes for Editors:
The conference on ocean acidification takes place from September 27 to 30, 2010. The various committees meet on Monday and Prof. Ulrich Bathmann will officially open the conference on Tuesday.

Your contacts at the Alfred Wegener Institute are Dr. Anja Engel (tel.: 0471 4831-1055; e-mail: Anja.Engel@awi.de), Prof. Hans-Otto Pörtner (tel.: 0471 4831-1307; e-mail: Hans.Poertner@awi.de) and in the Communication and Media Department Stephanie von Neuhoff (tel.: 0471 4831-2008; e-mail: Stephanie.von.Neuhoff@awi.de). You will find printable pictures on our homepage at http://www.awi.de.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the sixteen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Event News:

nachricht Ecology Across Borders: International conference brings together 1,500 ecologists
15.11.2017 | Gesellschaft für Ökologie e.V.

nachricht Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel
15.11.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>