Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans acidify much faster than ever before in Earth’s history

27.09.2010
Conference: More than 200 scientists from all over Europe discuss increasing ocean acidification

For four days the topic of ocean acidification will be the focus of marine and polar research. The Alfred Wegener Institute for Polar and Marine Research in the Hemholtz Association is hosting the conference and expects more than 200 scientists from all over Europe at the Conference Center Bremerhaven.

The greenhouse gas carbon dioxide not only leads to global climate warming, but also to increasing acidification of the oceans. Next week scientists will discuss the most recent results on ocean acidification at the first joint meeting of the three large coordinated projects, EPOCA (European Project on Ocean Acidification), the German project BIOACID (Biological Impacts of Ocean ACIDification) and UK project UKOARP (UK Ocean Acidification Research Program).

The oceans take up about a third of the carbon dioxide (CO2) produced by the combustion of fossil fuel every year. When carbon dioxide dissolves in seawater, carbonic acid forms and the acidity (pH value) of the water decreases. Since the beginning of industrialisation the CO2 absorbed by the sea has led to an increase in surface ocean acidity by 30 percent. As a consequence, the concentration of carbonate ions in seawater is declining. Many marine organisms such as calcareous algae, mussels and snails have difficulties in forming their shells or skeletons. As a result of this, entire ecosystems such as coral reefs may be affected.

In conjunction with the three large-scale research projects, at national and international level the Alfred Wegener Institute is examining the impacts of ocean acidification, particularly on the biotic communities in the Arctic Ocean.

The polar regions are especially sensitive to ocean acidification. “The solubility of CO2 is exceptionally high due to the low sea water temperatures in the polar regions, so that carbonate ion concentrations, in turn, is also lower there and this shortage may be especially hard on the organisms living there. As many metabolic processes proceed more slowly at cold temperatures, the ability of polar organisms to compensate for an increased CO2 concentration may be restricted further,” says Prof. Hans-Otto Pörtner, animal physiologist at the Alfred Wegener Institute and co-coordinator of the BIOACID large-scale research project.

The specific processes in marine bacteria were examined by researchers of the Alfred Wegener Institute during a voyage of the research vessel “Polarstern” to the Arctic. Their latest results substantiated their current assumptions. “Acidified water stimulated bacterial production considerably and led to increased consumption of organic carbon compounds, which may reinforce release of CO2,” explained Dr. Anja Engel. Hardly any research has been conducted to date on the impact of climate change on the complex interrelationships of the marine carbon cycle and on the role microorganisms will play for the future CO2 balance in the Arctic Ocean, she adds. “The meeting of the three large-scale research projects offers a good forum for exchanging data and discussing joint approaches for solutions,” stated Dr. Anja Engel.

To completely understand the (longer-term) impacts of increasing ocean acidification, it is of crucial importance for researchers to take a look back at past events. After all, sediments in the ocean form a significant archive of the Earth’s history, comparable to books in a library. “Those who understand the language of sediments will be able to examine the evolution of the environment and climate conditions in the Earth’s history there,” says Prof. Jelle Bijma, marine biogeoscientist at the Alfred Wegener Institute. Ocean acidification events have left their “fingerprints” in the sediment at different places in the Earth’s history, such as during the transition from the Permian to the Triassic period 251 million years and during the Palaeocene/Eocene transition 55 million years ago. However, acidification in the past was always triggered by natural events. “Nowadays it is caused by the immense release of carbon dioxide due to human activity and the sea is less and less able to buffer these disruptions,” states Bijma. Furthermore, he adds, we have to realise that acidification events are almost always accompanied by global warming, increased stratification of the oceans and a reduction in the oxygen concentration of the deep sea.

“It is not the first time in the history of the Earth that the oceans have acidified, but a disturbing aspect now is that it is occurring much faster than ever before. As a consequence, not only the pH value drops, but the saturation state of the oceans with respect to carbonate falls as well. Times are tough, especially for calcifying organisms,” Bijma claims. Scientists will continue to investigate how various calciumcarbonate-producing marine organisms react to acidification and why their reactions vary and discuss their thoughts on this topic at the conference in Bremerhaven.

The three projects

BIOACID (Biological Impacts of Ocean ACIDification) is a coordinated project that investigates the impacts of ocean acidification on marine biotic communities since its launch in 2009. A total of 14 research institutes and universities from all over Germany are involved in the project funded by the Federal Ministry for Education and Research (BMBF) for three years to an amount of 8.5 million euros. The Leibniz Institute for Marine Sciences (IFM-GEOMAR) in Kiel is responsible for project coordination and management. The Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association is the co-coordinator.

The integrated project EPOCA (European Project on OCean Acidification) was launched in May 2008 with the overall goal to fill the numerous gaps in our understanding of ocean acidification and its consequences. The EPOCA consortium brings together more than 100 researchers from 32 institutes and 10 European countries. The research of this four-year long project is partly funded by the European Commission.

UKOARP (UK Ocean Acidification Research Program) is UK’s first research programme to investigate the impacts of ocean acidification. Launched in 2010 it involves 101 scientists from 21 of the UK’s top scientific institutions. The UK Ocean Acidification Research Programme consists of several projects working together to investigate different aspects of this global issue.

Contacts and more information on EPOCA, BIOACID and UKOARP please see project web sites:
http://www.epoca-project.eu
http://www.bioacid.de
http://www.oceanacidification.org.uk/
Notes for Editors:
The conference on ocean acidification takes place from September 27 to 30, 2010. The various committees meet on Monday and Prof. Ulrich Bathmann will officially open the conference on Tuesday.

Your contacts at the Alfred Wegener Institute are Dr. Anja Engel (tel.: 0471 4831-1055; e-mail: Anja.Engel@awi.de), Prof. Hans-Otto Pörtner (tel.: 0471 4831-1307; e-mail: Hans.Poertner@awi.de) and in the Communication and Media Department Stephanie von Neuhoff (tel.: 0471 4831-2008; e-mail: Stephanie.von.Neuhoff@awi.de). You will find printable pictures on our homepage at http://www.awi.de.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the sixteen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Event News:

nachricht International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open
20.03.2017 | Leibniz-Institut für ökologische Raumentwicklung e. V.

nachricht CONNECT 2017: International congress on connective tissue
14.03.2017 | Universität Ulm

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>