Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Woolly mammoth extinction has lessons for modern climate change

13.06.2012
Although humans and woolly mammoths co-existed for millennia, the shaggy giants disappeared from the globe between 4,000 and 10,000 years ago, and scientists couldn't explain until recently exactly how the Flinstonian behemoths went extinct.

In a paper published June 12 in the journal Nature Communications, UCLA researchers and colleagues reveal that not long after the last ice age, the last woolly mammoths succumbed to a lethal combination of climate warming, encroaching humans and habitat change — the same threats facing many species today.

"We were interested to know what happened to this species during the climate warming at the end of the last ice age because we were looking for insights into what might happen today due to human-induced climate change," said Glen MacDonald, director of UCLA's Institute of the Environment and Sustainability (IoES). "The answer to why woolly mammoths died off sounds a lot like what we expect with future climate warming."

MacDonald, a professor of geography and of ecology and evolutionary biology, worked with UCLA IoES scientists Robert Wayne and Blaire Van Valkenburgh, UCLA geographer Konstantine Kremenetski, and researchers from UC Santa Cruz, the Russian Academy of Science and the University of Hawaii Manoa.

Their work shows that although hunting by people may have contributed to the demise of woolly mammoths, contact with humans isn't the only reason this furry branch of the Elephantidae family went extinct. By creating the most complete maps to date of all the changes happening thousands of years ago, the researchers showed that the extinction didn't line up with any single change but with the combination of several new pressures on woolly mammoths.

When the last ice age ended about 15,000 years ago, woolly mammoths were on the rise. Warming melted glaciers, but the still-chilly temperatures were downright comfy for such furry animals and kept plant life in just the right balance. It was good weather for growing mammoths' preferred foods, while still too cold for the development of thick forests to block their paths or for marshy peatlands to slow their stride.

But the research explains that the end was coming for the last of the woolly mammoths, who inhabited Beringia, a chilly region linked by the Bering Strait that included wide swaths of Alaska, the Yukon and Siberia.

Though humans had hunted woolly mammoths in Siberia for millennia, it wasn't until the last ice age that people crossed the Bering Strait and began hunting them in Alaska and the Yukon for the first time. After a harsh, 1,500-year cold snap called the Younger Dryas about 13,000 years ago, the climate began to get even warmer. The rising temperatures led to a decline in woolly mammoths' favored foods, like grasses and willows, and encouraged the growth of low-nutrient conifers and potentially toxic birch. Marshy peatlands developed, forcing the mammoths to struggle through difficult and nutritionally poor terrain, and forests became more abundant, squeezing mammoths out of their former territory.

"It's not just the climate change that killed them off," MacDonald said. "It's the habitat change and human pressure. Hunting expanded at the same time that the habitat became less amenable."

Most of the woolly mammoths died about 10,000 years ago, with the final small populations, which were living on islands, lingering until about 4,000 years ago.

Many previous theories about the mammoths' extinction tended to blame only one thing: hunting, climate changes, disease or even an ice-melting, climate-changing meteor, MacDonald said. The new research marks the first time scientists mapped out and dated so many different aspects of the era at once. Using radiocarbon dating of fossils, the researchers were able to trace the changing locations of peatlands, forests, plant species, mammoth populations and human settlements over time, and they cross-referenced this information with climate-change data.

The research used 1,323 mammoth radiocarbon dates, 658 peatland dates, 447 tree dates, and 576 dates from Paleolithic archaeological sites. Scientists from IoES and other UCLA departments obtained samples and worked on radiocarbon dating of the peatlands and the forests, and they created a database uniting information on hundreds of previously dated mammoth samples, developing the final map from thousands of dates and latitude and longitude records.

That's what drew Van Valkenburgh, a paleontologist and professor of ecology and evolutionary biology, to the project.

"Glen's project combined paleobotanical, paleontological, genetic, archaeological and paleoclimate data and did it in a bigger way, with many more data points, than has been done before," said Van Valkenburgh, who interpreted the archaeological record. "I was excited to be able to contribute to such an ambitious and exciting study."

She and Wayne, a UCLA molecular geneticist and professor of ecology and evolutionary biology who studies ancient DNA, used different methods of examining the mammoth fossils to reconstruct the ancient population size.

"It's a dramatic advance in the amount of data," said Wayne, who reconstructed mitochondrial DNA from radiocarbon-dated woolly mammoth remains. "Essentially, larger populations should have greater genetic diversity. However, in this case, the extent of fossil remains provided a more high-resolution picture of how the population size changed through time than genetic diversity."

Mapping the size and location of both mammoth and human populations alongside temperature changes and plant locations through time gave the researches a uniquely complete view of what happened, MacDonald said.

"We are, in a sense, time-traveling with our maps to look at the mammoths," he said.

It's something MacDonald has dreamed of for a long time, he said. He was working in Siberia several years ago when a colleague found a woolly mammoth tooth.

"We looked at it and held it, and just the thought that those immense creatures had been there not that long ago in geologic time and yet completely disappeared was really amazing," MacDonald said. "How warming in the past has been involved in extinction might help us prevent extinctions in the future."

The UCLA Institute of the Environment and Sustainability is an educational and research institute that unites disciplines: physical, life and social sciences; business and economics; public policy and urban planning; engineering and technology; and medicine and public health. IoES includes multiple cross-disciplinary research centers, and its environmental science undergraduate degree program is one of the fastest growing majors at UCLA. IoES advises businesses and policymakers on sustainability and the environment and informs and encourages community discussion about critical environmental issues.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Alison Hewitt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>