Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind power does not strongly affect greater prairie chickens, seven-year study finds

11.07.2013
Wind power development does not ruffle the feathers of greater prairie chicken populations, according to the results of a seven-year study from a Kansas State University ecologist and his team.

The researchers -- led by Brett Sandercock, professor of biology -- discovered that wind turbines have little effect on greater prairie chickens, and that these grassland birds are more affected by rangeland management practices and by the availability of native prairie and vegetation cover at nest sites. Unexpectedly, the scientists also found that female survival rates increased after wind turbines were installed.

With the arrival of wind energy projects in Kansas and throughout the Plains, Sandercock and his team were part of a consortium of stakeholders -- including conservationists, wildlife agencies and wind energy companies -- who studied how these wind projects influence grassland birds.

"We had a lot of buy-in from stakeholders and we had an effective oversight committee," said Sandercock, who studies grassland birds. "The research will certainly aid with wind power site guidelines and with the development of mitigation strategies to enhance habitat conditions for the greater prairie chicken."

The greater prairie chicken was once abundant across the central Plains, but populations have declined because of habitat loss and human development. The chickens now are primarily found in the Great Plains in Kansas -- particularly the Smoky Hills and the Flint Hills -- where the largest tracts of prairie remain.

Sandercock and his team started their study in 2006 with three field sites that were chosen for wind development: a site in the Smoky Hills in north central Kansas, a site in the northern Flint Hills in northeastern Kansas and a site in the southern Flint Hills in southern Kansas. The Smoky Hills site -- the Meridian Way Wind Power Facility near Concordia -- was developed into a wind energy site, which gave researchers the opportunity to observe greater prairie chickens before, during and after wind turbine construction. The researchers cooperated and collaborated with private landowners at each site.

The researchers studied the birds for seven breeding seasons and captured nearly 1,000 total male and female birds around lek sites, which are communal areas where males gather and make calls to attract females. Females mate with the males and then hide nests in tall prairie grass.

The scientists researched many different features of prairie chickens and their biology: patterns of nest site selection; reproductive components, such as clutch size, timing of laying eggs and hatchability of eggs; survival rates; and population viability.

"We don't have evidence for really strong effects of wind power on prairie chickens or their reproduction," Sandercock said. "We have some evidence for females avoiding the turbines, but the avoidance within the home range doesn't seem to have an impact on nest site selection or nest survival."

The results are somewhat surprising, especially because similar studies have shown that oil and gas development affect prairie chickens, Sandercock said. With wind power development, the researchers had the unexpected result of female survival rates increasing after wind turbines were installed, potentially because wind turbines may keep predators away from nest sites. Female mortality rates are highest during the breeding season because females are more focused on protecting clutches than avoiding predators, Sandercock said.

"What's quite typical for these birds is most of the demographic losses are driven by predation. We can say that with confidence," Sandercock said. "What's a little unclear from our results is whether that increase in female survivorship was due to the effects of wind turbines on predators."

The researchers also found that conservation management practices seem to have the strongest effect on the birds, Sandercock said. Prairie chickens are ground-nesting birds and need adequate cover for their nests to survive. Grazing and fire management practices can affect how much nesting cover is available for chickens.

"A lot of what drives nest survival is the local conditions around the nest," Sandercock said. "Do they have good nesting cover or not? Our results are important because they suggest ways for mitigation."

The team is conducting follow-up studies to test mitigation strategies that may improve habitat conditions for prairie chickens. They are in their third season in a field study of patch burn grazing in Chase County and how it affects prairie chickens and grassland songbirds. Patch-burn grazing involves dividing a pasture into three parts and burning a third of the pasture each year. The practice creates a rotation basis so that each third of a pasture rests for two years. Preliminary data shows that patch-burn grazing seems to provide enough cover for ground-nesting birds, Sandercock said.

Collaborators on the wind development project include Samantha Wisely, associate professor of wildlife ecology and conservation at the University of Florida; Virginia Winder, assistant professor of biology at Benedictine College; Lance McNew, 2010 doctoral graduate in biology and research wildlife biologist with the U.S. Geological Survey at the Alaska Science Center; Andrew Gregory, 2011 doctoral graduate in biology and postdoctoral scholar at Northern Arizona University; and Lyla Hunt, master's student in biology, Riverside, Calif.

The Grassland Community Collaborative Oversight Committee of the National Wind Coordinating Collaborative oversaw the research project. The project received funding from a variety of sources including the U.S. Department of Energy; the National Renewable Energy Laboratory; the Kansas Department of Wildlife, Parks, and Tourism; the National Fish and Wildlife Foundation; and The Nature Conservancy.

The final project report can be viewed at http://www.osti.gov/bridge/product.biblio.jsp?osti_id=1080446.

Brett Sandercock | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>