Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water Quality Trading Could Significantly Reduce Chesapeake Bay Cleanup Costs

14.05.2012
Allowing developers and communities to buy "credits" for pollution reductions made by others has the potential to significantly reduce the projected costs of cleaning up Chesapeake Bay, an economic analysis conducted by RTI International suggests.

According to the study, nutrient credit trading—allowing polluters to purchase reductions from other sources to help meet pollution reduction goals—could result in a 20 to 80 percent decrease in cleanup costs, depending on implementation.

Urban stormwater systems, sewage treatment plants, farms and other pollution sources near the Bay are required to reduce their nitrogen and phosphorus pollution in accordance with the federal Chesapeake Bay Total Maximum Daily Load (the watershed pollution allowance).

The study, which was sponsored by the Chesapeake Bay Commission, estimates that nutrient credit trading could cut as much as $1 billion a year from the costs required to upgrade sewage treatment plants and control stormwater pollution. Millions more could be saved by allowing communities and developers to pay farmers to plant trees or create wetlands to offset pollution caused by growth and new development.

"Our goal was to investigate the potential cost savings that could be achieved when considering different nutrient trading scenarios applied to the watershed as a whole," said George Van Houtven, Ph.D., senior economist at RTI and lead author of the study. "Nutrient credit trading could deliver significant cost savings, which increase as more nutrient sources are allowed to participate in the program."

The study projected that nutrient credit trading could reduce projected costs for upgrading sewage plants by between 20 and 50 percent. Communities required to control their stormwater pollution might see as much as an 80 percent cost reduction if they are instead allowed to pay farmers to adopt conservation practices that would capture nutrients before they can reach waterways.

The researchers caution that actual savings would vary among individual river basins and states based on cleanup options and availability of trading.

"The emphasis on potential savings is important for interpreting the results of this study," Van Houtven said. "The estimates from our analysis represent the cost savings that could be achieved from trading under best-case conditions."

The potential savings are particularly high when including urban sources, due primarily to the relatively high cost of controlling nutrients from urban stormwater runoff. The study also found that including many sources of nutrient trading has a greater impact on potential cost savings than does expanding the geographic scope of trading.

To account for uncertainties in conservation practices and to protect local water quality, the study factored in several limitations to the nutrient credit trading process. These include requiring that farm conservation practices generate two pounds of nutrient credits for each single pound of credits needed from other sources, limiting the total volume of trades between segments of the Bay watershed, and increasing the cost of farm conservation measures to include the expense of monitoring and verifying performance.

About RTI International
RTI International is one of the world's leading research institutes, dedicated to improving the human condition by turning knowledge into practice. Our staff of more than 2,800 provides research and technical expertise to governments and businesses in more than 40 countries in the areas of health and pharmaceuticals, education and training, surveys and statistics, advanced technology, international development, economic and social policy, energy and the environment, and laboratory and chemistry services. For more information, visit www.rti.org.

Jennifer Greer | Newswise Science News
Further information:
http://www.rti.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>