Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vines choke a forest's ability to capture carbon, Smithsonian scientists report

28.05.2014

Tropical forests are a sometimes-underappreciated asset in the battle against climate change. They cover seven percent of land surface yet hold more than 30 percent of Earth's terrestrial carbon.

As abandoned agricultural land in the tropics is taken over by forests, scientists expect these new forests to mop up industrial quantities of atmospheric carbon. New research by Smithsonian scientists shows increasingly abundant vines could hamper this potential and may even cause tropical forests to lose carbon.


Stefan Schnitzer is worried that lianas are reducing the amount of carbon that tropical forests store on Panama's Barro Colorado Island.

Credit: Smithsonian, Sean Mattson, staff photographer

In the first study to experimentally demonstrate that competition between plants can result in ecosystem-wide losses of forest carbon, scientists working in Panama showed that lianas, or woody vines, can reduce net forest biomass accumulation by nearly 20 percent. Researchers called this estimate "conservative" in findings published this month in Ecology.

"This paper represents the first experimental quantification of the effects of lianas on biomass," said lead author Stefan Schnitzer, a research associate at the Smithsonian Tropical Research Institute and professor at the University of Wisconsin-Milwaukee. "As lianas increase in tropical forests, they will lower the capacity for tropical forests to accumulate carbon."

... more about:
»Ecology »biomass »forests »gaps »lianas »tropical »tropics

Previous research by Schnitzer and others demonstrated that lianas are increasing in tropical forests around the globe. No one knows why. Decreased rainfall is one suspect, but lianas, which are generally more drought-tolerant than trees, are increasing in abundance even in rainforests that have not experienced apparent changes in weather patterns.

Lianas climb trees to reach the forest canopy where their leaves blot out the sunlight required for tree growth. They account for up to 25 percent of the woody plants in a typical tropical forest, but only a few percent of its carbon. They do not compensate for displaced carbon due to relatively low wood volume, low wood density and a high rate of turnover.

Machetes in hand, Schnitzer and colleagues chopped lianas out of forest plots for this study. After collecting eight years of data comparing liana-free plots with naturally liana-filled plots in the same forest, they quantified the extent to which lianas limited tree growth, hence carbon uptake. In gaps created by fallen trees, lianas were shown to reduce tree biomass accumulation by nearly 300 percent. Findings by Schnitzer and colleagues, also published this year in Ecology, showed that liana distribution and diversity are largely determined by forest gaps, which is not the case for tropical trees.

Arid conditions in gaps are similar to recently reforested areas. "The ability of lianas to rapidly invade open areas and young forests may dramatically reduce tropical tree regeneration — and nearly all of the aboveground carbon is stored in trees," said Schnitzer. Lianas have been shown to consistently hinder the recruitment of small trees, and limit the growth, fecundity and survival of established trees.

"Scientists have assumed that the battle for carbon is a zero-sum game, in which the loss of carbon from one plant is balanced by the gain of carbon by another. This assumption, however, is now being challenged because lianas prevent trees from accumulating vast amounts of carbon, but lianas cannot compensate in terms of carbon accumulation," said Schnitzer. "If lianas continue to increase in tropical forests, they will reduce the capacity for tropical forests to uptake carbon, which will accelerate the rate of increase of atmospheric carbon worldwide."

###

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: http://www.stri.si.edu.

Sean Mattson | Eurek Alert!

Further reports about: Ecology biomass forests gaps lianas tropical tropics

More articles from Ecology, The Environment and Conservation:

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht The European pet trade is jeopardising the survival of rare reptile species
13.07.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>