Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Underwater grass comeback bodes well for Chesapeake Bay


The Susquehanna Flats, a large bed of underwater grasses near the mouth of the Susquehanna River, virtually disappeared from the upper Chesapeake Bay after Tropical Storm Agnes more than 40 years ago. However, the grasses mysteriously began to come back in the early 2000s. Today, the bed is one of the biggest and healthiest in the Bay, spanning some 20 square miles. A new study by scientists at the University of Maryland Center for Environmental Science explores what's behind this major comeback.

"This is a story about resilience," said Donald Boesch, president of the University of Maryland Center for Environmental Science. "It's a powerful example of how organisms in ecosystems once given a chance can make themselves resistant to stresses and changes."

After a decades long absence, the under water grasses in the upper Chesapeake Bay are back.

Credit: University of Maryland Center for Environmental Science

Underwater grasses are important to the Bay because they provide habitat for juvenile fish and enhance water clarity by trapping and removing sediment from the water. Historically extolled by trophy fisherman and waterfowl enthusiasts as prime wildlife habitat, researchers believe that the underwater grass beds at the shallow Susquehanna Flats began to decline in the 1960s when polluted runoff from a rapidly developing watershed overwhelmed the Bay's waters with nutrients, causing algae blooms that blocked out much-needed sunlight for underwater plants.

"Underwater grasses are sensitive to water quality so they are a direct indicator of the Bay's health," said lead-author Cassie Gurbisz of the Center's Horn Point Laboratory. "The fact that they came back means something good is happening. It's important, however, for us to understand how they came back so we can use that information to support restoration in other areas."

With SAV already stressed by nutrient pollution, it was Tropical Storm Agnes in 1972—a three-day weather event in June that dumped up to 19 inches of rain on the region and an estimated 30 million tons of sediment into the Chesapeake Bay—that was the final blow that destroyed the bed. A torrent of polluted floodwaters and sediment overwhelmed the beds, and the submerged plants virtually disappeared for nearly three decades. That is until the early 2000s when the underwater grasses, also called submerged aquatic vegetation (SAV), rapidly recolonized nearly the entire region.

"This was a large and abrupt resurgence. The Susquehanna Flats SAV bed is gigantic--the largest in the Chesapeake, with multiple species of grasses," said Professor Michael Kemp. "When you're out on the Flats in summer at low tide, you see these plants at the water surface all around you, and it's a truly awe inspiring scene."

It was clear that the extreme flood event following Tropical Storm Agnes triggered the historic demise of the grasses at Susquehanna Flats, however the extended absence of SAV for over 30 years—and the rapid comeback in the last decade—was puzzling to scientists. Researchers analyzed recent and historical data to try to develop a model that explains this resurgence. Monitoring programs throughout the years provided a wealth of information on underwater grasses (since 1958), water quality (since 1984) and even climate-related variables, such as temperature and rivers discharge dating back to the late 1800s.

Researchers found that modest reductions in nutrient pollution to the Bay beginning in the late 1980s had led to long-term improvements to water clarity and the amount of light available for plants to grow underwater. A dry period from 1997-2002 combined with the absence of major storm events provided ideal conditions for new plant growth, and a critical threshold for the amount of light reaching the plants was crossed. As a result, the bed began to expand and colonize deeper water.

"Exceptional growing conditions during the drought period allowed the system to overcome turbid water and served to kick start a rapid resurgence," said Cassie Gurbisz. "Light availability is the most important factor in the growth of submersed plants."

Then the plants took over with a process called positive feedback. That is, once given a chance, grass beds can improve their own growing conditions by helping sediment drop to the bottom and stay there (increasing the amount of sunlight that can reach their leaves), and using excess nutrients in the water to grow. The researchers found lower nitrogen concentrations and less turbidity in the grass beds than the surrounding waters.

These feedbacks also affect a plant bed's resilience, or its ability to resist disturbances such as storms and rebound after they pass. The researchers note that in the decade before Tropical Storm Agnes, the bed was deteriorating. As a result, feedbacks were not very strong and the bed was unable to stand up to Agnes. The present bed is, evidently, more resilient. When major floodwaters flowed from the Susquehanna River in Fall 2011, a portion of the bed was lost. However, the remaining bed has continued to thrive and expand.

"These processes and patterns are not unique to Susquehanna Flats. Similar trends have been suggested for the Mid-Atlantic Coastal Bays and Northern Europe alike," said Kemp. "Our broader motivation lies in the idea that the methods and models used here can be applied elsewhere to explore similar plant bed dynamics around the world."

The paper, "Unexpected resurgence of a large submersed plant bed in Chesapeake Bay: Analysis of time series data," by Cassie Gurbisz and Michael Kemp of the University of Maryland Center for Environmental Science's Horn Point Laboratory, was published in the March 2014 issue of Limnology and Oceanography.


Univertsity of Maryland Center for Environmental Science The University of Maryland Center for Environmental Science unleashes the power of science to transform the way society understands and manages the environment. By conducting cutting-edge research into today's most pressing environmental problems, we are developing new ideas to help guide our state, nation, and world toward a more environmentally sustainable future through five research centers—the Appalachian Laboratory in Frostburg, the Chesapeake Biological Laboratory in Solomons, the Horn Point Laboratory in Cambridge, the Institute of Marine and Environmental Technology in Baltimore, and the Maryland Sea Grant College in College Park.

Amy Pelsinsky | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>