Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultra-violet Light Works as Screening Tool for Bats with White-nose Syndrome


Scientists discover a non-destructive yet effective way to screen bats in hibernation for white-nose syndrome

Scientists working to understand the devastating bat disease known as white-nose syndrome (WNS) now have a new, non-lethal tool to identify bats with WNS lesions —ultraviolet, or UV, light.

If long-wave UV light is directed at the wings of bats with white-nose syndrome, it produces a distinctive orange-yellow fluorescence. This orange-yellow glow corresponds directly with microscopic skin lesions that are the current “gold standard” for diagnosing white-nose syndrome in bats.

“When we first saw this fluorescence of a bat wing in a cave, we knew we were on to something,” said Greg Turner from Pennsylvania Game Commission, who has been using this technique since 2010. “It was difficult to have to euthanize bats to diagnose WNS when the disease itself was killing so many. This was a way to get a good indication of which bats were infected and take a small biopsy for testing rather than sacrifice the whole bat.”

Millions of bats in the United States have died from the fungal disease called White nose syndrome which is caused by the fungus Pseudogymnoascus (Geomyces) destructans (Pd). White-nose syndrome was first seen in New York during the winter of 2006. Since then, the disease has spread to 25 US states and 5 Canadian provinces.

A significant problem in studying WNS has been the unreliability of visual onsite inspection when checking for WNS in bats during hibernation; the only way to confirm presence of disease was to euthanize the bats and send them back to a laboratory for testing.

“Ultraviolet light was first used in 1925 to look for ringworm fungal infections in humans,” said Carol Meteyer, USGS scientist and one of the lead authors on the paper. “The fact that this technique could be transferred to bats and have such remarkable precision for indicating lesions positive for Pd invasion is very exciting.”

To test the UV light’s effectiveness, bats with and without white-nose syndrome in North America were tested by the U.S. Geological Survey’s National Wildlife Health Center, first using UV light, then using traditional histological techniques to verify the UV light’s accuracy.

In the USGS lab testing, 98.8 percent of bats with the orange-yellow fluorescence tested positive for white-nose syndrome, whereas 100 percent of those that did not fluoresce tested negative for the disease. Targeted biopsies showed that pinpoint areas of fluorescence coincided with the microscopic wing lesions that are characteristic for WNS.

Researchers in the Czech Republic then tested the UV light-assisted biopsy technique in the field, using it to collect small samples from areas of bat wing that fluoresced under UV light. In this study, 95.5 percent of wing biopsies that targeted areas of fluorescence were microscopically positive for WNS lesions, while again 100 percent of bats that did not fluoresce were negative for WNS.

Combining research from two continents demonstrates that UV diagnostics might be applicable worldwide with great sensitivity and specificity in detecting WNS.

“Moreover, the technique hurts the animal minimally and bats fly away after providing data for research,” said Natalia Martinkova from the Academy of Sciences of the Czech Republic. “This makes UV fluorescence an ideal tool for studying endangered species.”

This effort included partners in the USFWS, state and federal biologists, the Czech Science Foundation, and the National Speleological Society of the USA.

This research article, “Nonlethal Screening of Bat-wing Skin with the Use of Ultraviolet Fluorescence to Detect Lesions Indicative of White-Nose Syndrome,” was recently published in the Journal of Wildlife Diseases. More information may be found on USGS research on white-nose syndrome here.

Contact Information:
U.S. Department of the Interior, U.S. Geological Survey
Office of Communications and Publishing
12201 Sunrise Valley Dr, MS 119
Reston, VA 20192

Alex Demas
Phone: 703-648-4421

Carol Meteyer
Phone: 703-648-4057

David Blehert
Phone: 608-270-2466

Alex Demas | Eurek Alert!

Further reports about: Screening Syndrome USGS Wildlife bats biopsy fluorescence lesions microscopic

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>