Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF/IFAS Research Findings Shed Light on Seagrass Needs

22.04.2014

Seagrass beds represent critical and threatened coastal habitats around the world, and a new University of Florida study shows how much sunlight seagrass needs to stay healthy.

Loss of seagrass means fish, crabs and other animals lose their homes and manatees and sea turtles lose a source of food. Nutrients, such as phosphorous, may prevent seagrass from getting the sunlight it needs to thrive. Nutrients may come from many sources, among them fertilizers used in agriculture, golf courses and suburban lawns, pet waste and septic tank waste.


Tom Frazer, a professor of aquatic ecology and director of the School of Natural Resources and Environment at UF/IFAS, looks for seagrass in Florida's Gulf Coast. A new study Frazer helped supervise shows how much light seagrass need to survive.

Scientists often use seagrass to judge coastal ecosystems’ vitality, said Chuck Jacoby, a courtesy associate professor in the Department of Soil and Water Science and co-author of a new UF study that examines light and seagrass health.

“By protecting seagrass, we protect organisms that use seagrass and other photosynthetic organisms that need less light,” said Jacoby, a faculty member in UF’s Institute of Food and Agricultural Sciences.

When nutrient levels are too high, microorganisms in the water, called phytoplankton, use these nutrients and light to grow and reproduce until they become so abundant that they block sunlight seagrass needs to survive, said Zanethia Choice, a former UF graduate student who led the investigation.

“Seagrass can cope with short-term light reductions, but if those conditions last too long or occur too frequently, seagrass will deteriorate and ultimately die,” Choice said. “Good water clarity is vital for healthy coastal systems.”

Choice studied seagrass beds in a 700,000-acre swath off the coast of Florida’s Big Bend.
Choice, now a natural resource specialist with the U.S. Forest Service in Mississippi, conducted the study as part of her master’s thesis, under the supervision of Jacoby and Tom Frazer, a professor of aquatic ecology and director of the UF School of Natural Resources and Environment.

Choice combined 13 years of light and water quality data and two years of seagrass samples from habitats near the mouths of eight rivers that empty into the Gulf of Mexico.

Seagrass off the Steinhatchee, Suwannee, Waccasassa, Withlacoochee, Crystal, Homosassa, Chassahowitzka and Weeki Wachee rivers constitutes part of the second largest seagrass bed in Florida. The largest bed is in Florida Bay, between the Everglades and the Florida Keys, Jacoby said.

Choice wanted to see how much light was needed to keep the seagrass in this region healthy. She found different seagrass species needed varying amounts of light, ranging from 8 to 27 percent of the sunlight at the water’s surface.

The UF/IFAS study will give water resource managers, such as the state Department of Environmental Protection, water-clarity targets they can use to set proper nutrient levels for water bodies, Jacoby said.

Reducing nutrient levels can promote the health of seagrass and coastal waters. For example, concerted efforts to reduce nutrients flowing into Tampa Bay over the past 20-plus years resulted in a 50 percent reduction in nitrogen, a 50 percent increase in water clarity and a return of lost seagrass, according to a study conducted by the Tampa Bay Estuary Program.

Unlike Tampa Bay, there is no evidence that elevated nutrient levels in Choice’s study area have led to loss of seagrass. UF researchers are trying to make sure nutrients do not pollute the seagrass beds off the coast of the Big Bend, and they hope their results will guide managers as they strive to prevent any damage.

The study of seagrass light requirements is published in this month’s issue of the journal Marine Pollution Bulletin.

Sources: Zanethia Choice, 662-234-2744 ext. 268, zdchoice@fs.fed.us
Chuck Jacoby, 352-273-3631, cajacoby@ufl.edu

Zanethia Choice | newswise
Further information:
http://www.ufl.edu

Further reports about: Agricultural Food healthy nutrient photosynthetic sunlight

More articles from Ecology, The Environment and Conservation:

nachricht Environmental DNA uncovers biodiversity in rivers
30.08.2016 | Universität Zürich

nachricht New approach for environmental test on livestock drugs
27.07.2016 | Universität Zürich

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virtual Reality: 3D Human Body Reconstruction from Fraunhofer HHI digitizes Human Beings

Scientists at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI have developed a method by which the realistic image of a person can be transmitted into a virtual world. The 3D Human Body Reconstruction Technology captures real persons with multiple cameras at the same time and creates naturally moving dynamic 3D models. At this year’s trade fairs IFA in Berlin (Hall 11.1, Booth 3) and IBC in Amsterdam (Hall 8, Booth B80) Fraunhofer HHI will show this new technology.

Fraunhofer HHI researchers have developed a camera system that films people with a perfect three-dimensional impression. The core of this system is a stereo...

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Cancer: Molecularly shutting down cancer cachexia

31.08.2016 | Life Sciences

Robust fuel cell heating unit developed

31.08.2016 | Power and Electrical Engineering

Algorithms Offer Insight into Cellular Development

31.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>