Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF/IFAS Research Findings Shed Light on Seagrass Needs

22.04.2014

Seagrass beds represent critical and threatened coastal habitats around the world, and a new University of Florida study shows how much sunlight seagrass needs to stay healthy.

Loss of seagrass means fish, crabs and other animals lose their homes and manatees and sea turtles lose a source of food. Nutrients, such as phosphorous, may prevent seagrass from getting the sunlight it needs to thrive. Nutrients may come from many sources, among them fertilizers used in agriculture, golf courses and suburban lawns, pet waste and septic tank waste.


Tom Frazer, a professor of aquatic ecology and director of the School of Natural Resources and Environment at UF/IFAS, looks for seagrass in Florida's Gulf Coast. A new study Frazer helped supervise shows how much light seagrass need to survive.

Scientists often use seagrass to judge coastal ecosystems’ vitality, said Chuck Jacoby, a courtesy associate professor in the Department of Soil and Water Science and co-author of a new UF study that examines light and seagrass health.

“By protecting seagrass, we protect organisms that use seagrass and other photosynthetic organisms that need less light,” said Jacoby, a faculty member in UF’s Institute of Food and Agricultural Sciences.

When nutrient levels are too high, microorganisms in the water, called phytoplankton, use these nutrients and light to grow and reproduce until they become so abundant that they block sunlight seagrass needs to survive, said Zanethia Choice, a former UF graduate student who led the investigation.

“Seagrass can cope with short-term light reductions, but if those conditions last too long or occur too frequently, seagrass will deteriorate and ultimately die,” Choice said. “Good water clarity is vital for healthy coastal systems.”

Choice studied seagrass beds in a 700,000-acre swath off the coast of Florida’s Big Bend.
Choice, now a natural resource specialist with the U.S. Forest Service in Mississippi, conducted the study as part of her master’s thesis, under the supervision of Jacoby and Tom Frazer, a professor of aquatic ecology and director of the UF School of Natural Resources and Environment.

Choice combined 13 years of light and water quality data and two years of seagrass samples from habitats near the mouths of eight rivers that empty into the Gulf of Mexico.

Seagrass off the Steinhatchee, Suwannee, Waccasassa, Withlacoochee, Crystal, Homosassa, Chassahowitzka and Weeki Wachee rivers constitutes part of the second largest seagrass bed in Florida. The largest bed is in Florida Bay, between the Everglades and the Florida Keys, Jacoby said.

Choice wanted to see how much light was needed to keep the seagrass in this region healthy. She found different seagrass species needed varying amounts of light, ranging from 8 to 27 percent of the sunlight at the water’s surface.

The UF/IFAS study will give water resource managers, such as the state Department of Environmental Protection, water-clarity targets they can use to set proper nutrient levels for water bodies, Jacoby said.

Reducing nutrient levels can promote the health of seagrass and coastal waters. For example, concerted efforts to reduce nutrients flowing into Tampa Bay over the past 20-plus years resulted in a 50 percent reduction in nitrogen, a 50 percent increase in water clarity and a return of lost seagrass, according to a study conducted by the Tampa Bay Estuary Program.

Unlike Tampa Bay, there is no evidence that elevated nutrient levels in Choice’s study area have led to loss of seagrass. UF researchers are trying to make sure nutrients do not pollute the seagrass beds off the coast of the Big Bend, and they hope their results will guide managers as they strive to prevent any damage.

The study of seagrass light requirements is published in this month’s issue of the journal Marine Pollution Bulletin.

Sources: Zanethia Choice, 662-234-2744 ext. 268, zdchoice@fs.fed.us
Chuck Jacoby, 352-273-3631, cajacoby@ufl.edu

Zanethia Choice | newswise
Further information:
http://www.ufl.edu

Further reports about: Agricultural Food healthy nutrient photosynthetic sunlight

More articles from Ecology, The Environment and Conservation:

nachricht Traffic emissions may pollute 1 in 3 Canadian homes
22.04.2015 | University of Toronto Faculty of Applied Science & Engineering

nachricht Engineers purify sea and wastewater in 2.5 minutes
17.04.2015 | Investigación y Desarrollo

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>