Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI engineers watch over the water system

20.08.2009
New sensors are designed to monitor pipes after earthquakes and other disasters

After a big earthquake, it's key to keep the water system afloat. Water is necessary for life, and it fights the fires that often accompany such disasters.

UC Irvine engineers plan to outfit the local water system with sensors that will alert officials when and where pipes crack or break, hastening repair - thanks to nearly $5.7 million over three years from the National Institute of Standards and Technology and several local water groups.

"When an earthquake occurs and infrastructure systems fail, continued service of the water network is most critical," said Masanobu Shinozuka, lead project investigator and civil & environmental engineering chair. "Before anything happens, I'd like to have a pipe monitoring system in place to let us know when and where damage occurs. It could minimize misery and save lives."

About 240,000 water-main breaks occur per year in the U.S., according to the Environmental Protection Agency. For example, in December a burst sent about 150,000 gallons of water per minute onto a busy Maryland road, stranding motorists in the icy deluge. Water system failures are estimated to waste up to 6 billion gallons of drinking water every day.

Shinozuka and Pai Chou, electrical engineering & computer science associate professor, have created CD-sized sensing devices that attach to the surface of pressurized (drinking water) and nonpressurized (wastewater) pipes. They will detect vibration and sound changes that could indicate pipe problems. Through antennae, the sensors will relay information wirelessly over long distances to a central location for recording, processing and diagnostic analysis.

Initially, the sensor network will cover about one square mile of the local water system; eventually, it could encompass more than 10 square miles - the largest of its kind to date. A small-scale pressurized water pipe network designed and built by UCI researchers has confirmed that this type of damage identification works well.

The research team now is designing a system that functions underground as well as over a larger area. The main hurdles, Shinozuka said, are powering the sensors (batteries and solar energy are not strong enough), making them more cost-effective and robust in tough environments, and achieving long-range wireless communication efficiently and accurately.

Using existing pipe networks, the team will then test and calibrate the sensors by simulating and monitoring pressure changes equivalent to those arising from actual pipe damage. The sensors will complement an existing monitoring system called Supervisory Control and Data Acquisition.

"SCADA sensors are too sparsely placed for identifying damage with the kind of precision we desire when a large earthquake or other natural hazard affects many locations," Shinozuka said.

"An isolated malfunction is far different from a situation in which pipes break all over the place," he said. "Our next-generation system will inform us as soon as possible when and where damage occurs and to what extent so we can better mitigate the consequences."

As the research progresses, the team plans to develop methods of rapidly repairing pipe damage at joints and other vulnerable locations.

Collaborating with UCI on the endeavor are Fountain Valley-based Earth Mechanics Inc., the Irvine Ranch Water District, the Orange County Sanitation District and the Santa Ana Watershed Project Authority.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, 1,100 faculty and 9,200 staff. The top employer in dynamic Orange County, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit http://today.uci.edu/.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>