Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCI engineers watch over the water system

New sensors are designed to monitor pipes after earthquakes and other disasters

After a big earthquake, it's key to keep the water system afloat. Water is necessary for life, and it fights the fires that often accompany such disasters.

UC Irvine engineers plan to outfit the local water system with sensors that will alert officials when and where pipes crack or break, hastening repair - thanks to nearly $5.7 million over three years from the National Institute of Standards and Technology and several local water groups.

"When an earthquake occurs and infrastructure systems fail, continued service of the water network is most critical," said Masanobu Shinozuka, lead project investigator and civil & environmental engineering chair. "Before anything happens, I'd like to have a pipe monitoring system in place to let us know when and where damage occurs. It could minimize misery and save lives."

About 240,000 water-main breaks occur per year in the U.S., according to the Environmental Protection Agency. For example, in December a burst sent about 150,000 gallons of water per minute onto a busy Maryland road, stranding motorists in the icy deluge. Water system failures are estimated to waste up to 6 billion gallons of drinking water every day.

Shinozuka and Pai Chou, electrical engineering & computer science associate professor, have created CD-sized sensing devices that attach to the surface of pressurized (drinking water) and nonpressurized (wastewater) pipes. They will detect vibration and sound changes that could indicate pipe problems. Through antennae, the sensors will relay information wirelessly over long distances to a central location for recording, processing and diagnostic analysis.

Initially, the sensor network will cover about one square mile of the local water system; eventually, it could encompass more than 10 square miles - the largest of its kind to date. A small-scale pressurized water pipe network designed and built by UCI researchers has confirmed that this type of damage identification works well.

The research team now is designing a system that functions underground as well as over a larger area. The main hurdles, Shinozuka said, are powering the sensors (batteries and solar energy are not strong enough), making them more cost-effective and robust in tough environments, and achieving long-range wireless communication efficiently and accurately.

Using existing pipe networks, the team will then test and calibrate the sensors by simulating and monitoring pressure changes equivalent to those arising from actual pipe damage. The sensors will complement an existing monitoring system called Supervisory Control and Data Acquisition.

"SCADA sensors are too sparsely placed for identifying damage with the kind of precision we desire when a large earthquake or other natural hazard affects many locations," Shinozuka said.

"An isolated malfunction is far different from a situation in which pipes break all over the place," he said. "Our next-generation system will inform us as soon as possible when and where damage occurs and to what extent so we can better mitigate the consequences."

As the research progresses, the team plans to develop methods of rapidly repairing pipe damage at joints and other vulnerable locations.

Collaborating with UCI on the endeavor are Fountain Valley-based Earth Mechanics Inc., the Irvine Ranch Water District, the Orange County Sanitation District and the Santa Ana Watershed Project Authority.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the fastest-growing University of California campuses, with more than 27,000 undergraduate and graduate students, 1,100 faculty and 9,200 staff. The top employer in dynamic Orange County, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Jennifer Fitzenberger | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>