Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M, Other Universities Launch Great Lakes Protection Project

16.10.2012
The University of Michigan and 20 other U.S. and Canadian universities will join forces to propose a set of long-term research and policy priorities to help protect and restore the Great Lakes and to train the next generation of scientists, attorneys, planners and policy specialists who will study them.

The Great Lakes Futures Project of the Transborder Research University Network will use a cross-disciplinary, cross-sector approach to outlining alternative Great Lakes futures through science-based scenario analysis.

"With the recent release of the revised Great Lakes Water Quality Agreement, this is a critical time to bring together scholars and practitioners from across the region to chart a more protective future for this precious resource," said Donald Scavia, director of U-M's Graham Sustainability Institute.

The Great Lakes basin is home to more than 35 million people—30 percent of the Canadian population and 10 percent of the U.S. population. The economic output of the basin is one of the largest in the world (more than $4 trillion gross regional product), and the area is expected to grow by 20 million people over the next 20 years. While the basin contains more than 80 percent of the water in North America and 21 percent of the world's surface fresh water, demands from within and outside the basin are substantial and escalating.

The Great Lakes Futures Project will be led by Irena Creed of Western University, Gail Krantzberg of McMaster University, Kathryn Friedman of SUNY at Buffalo and U-M's Scavia. The project will be managed by Katrina Laurent of Western University.

This unprecedented collaboration of U.S. and Canadian academics, governments, nongovernment organizations, industry and private citizens will address questions such as "How can this water and watershed be managed?" and "What are the environmental, social, economic and political impacts of those management plans?"

The assessment will begin with development of white papers outlining critical drivers of change in the Great Lakes basin over the past 50 years and the next 50 years, including climate change, the economy, biological and chemical contaminants, invasive species, demographics and societal values, governance and geopolitics, energy and water quantity.

These papers will be developed by teams of graduate students from Canadian and U.S. universities under the mentorship of leaders in Great Lakes-St. Lawrence River basin research and presented at a workshop at U-M in January. The assessments will drive scenario analyses and policy briefs that will be communicated to residents and government officials in both Canada and the U.S.

The Great Lakes Futures Project will also produce scholarly and popular publications and will conduct public events with schools and community groups. In addition, it has the potential to create a binational academic forum, research collaborations and a think tank. This initiative has also laid the foundation for two major federal grant opportunities for training of highly qualified personnel who will work on improving the status of the Great Lakes.

Eighteen U.S. and Canadian universities and colleges have provided cash support to the project. They are: University of Michigan, Michigan State University, Wayne State University, SUNY at Buffalo, Guelph University, McMaster University, Queens University, Trent University, University of Toronto, University of Windsor, Ryerson University, Waterloo University, Western University, York University, McGill University, Seneca College, Université de Montréal and the Université du Québec à Trois Rivière.

Funding was also provided by the Group for Interuniversity Research in Limnology and Aquatic Environment, Michigan Sea Grant and New York Sea Grant.

Project officials will recruit students for the next phase of the scenario analysis this fall. To learn how your institution can be involved, contact the Great Lakes Futures Project at kiglic2@uwo.ca.

The Transborder Research University Network expands and supports cooperation among research universities in the border region of Canada and United States through collaborative/ consortial research; joint applications for external funding; cooperative academic programs; faculty and student exchanges; shared facilities, library materials and electronic resources; and joint conferences, symposia and workshops.

Transborder Research University Network: http://wings.buffalo.edu/intled/trun

Jim Erickson | Newswise Science News
Further information:
http://www.umich.edu

Further reports about: Canadian Light Source Great Basin Great Lake Lakes sea snails

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>