Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M study finds fertilization destabilizes global grassland ecosystems

17.02.2014
A new study led by University of Minnesota researchers demonstrates that fertilization of natural grasslands -- either intentionally or unintentionally as a side effect of global farming and industry -- is having a destabilizing effect on global grassland ecosystems.

Using a network of natural grassland research sites around the world called the Nutrient Network, the study represents the first time such a large experiment has been conducted using naturally occurring sites.

Led by Yann Hautier, a Marie Curie Fellow associated with both the Department of Ecology, Evolution, and Behavior at the University of Minnesota and the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich, the research team included U of M associate professors Eric Seabloom and Elizabeth Borer, and research scientist Eric Lind, along with scientists from institutions around the world including Andy Hector at Oxford University's Department of Plant Sciences. The findings were published on February 16 in the journal Nature.

The researchers found that plant diversity in natural ecosystems creates more stable ecosystems over time because of less synchronized growth of plants. "This is sometimes called the portfolio effect," says Seabloom. "If you have money in two investments and they're both stocks, they're going to track each other, but if one is a stock and one is a bond, they're going to respond differently to the overall economy and are more likely to balance each other."

The researchers collected plants from each of the sites, then sorted, dried, and weighed them to monitor the number of species of plants and total amount of plants, or "biomass," grown over time. They used this information to quantify species diversity and ecosystem stability. Says Hautier: "It was really striking to see the relationship between diversity and stability" and the similarities to data collected from artificial grasslands as part of a research effort called BioDepth, indicating that the results from natural grasslands of the Nutrient Network could be predicted from the results of artificial grasslands.

"The results of our study emphasize that we need to consider not just how productive ecosystems are but also how stable they are in the long-term, and how biodiversity is related to both aspects of ecosystem functioning," says Andy Hector.

The researchers also found that grassland diversity and stability are reduced when fertilizer is added. Fertilizers are intentionally used in grassland to increase livestock fodder. Fertilizer addition is also occurring unintentionally in many places around the world because nitrogen, a common fertilizer, is released into the atmosphere from farming, industry, and burning fossil fuels. Rainfall brings nitrogen out of the atmosphere and on to grasslands, changing the growth and types of plant species. This study placed measured amounts of fertilizer on a portion of their research sites and measured the changes that ensued.

"What we find is that the stabilizing effect [of species diversity] is lost, and we have less stable ecosystems when we have more nutrients coming into that system," says Borer. This, the researchers found, was due to more synchronized growth of plants, eliminating the "portfolio effect."

This study was made possible due to the formation of the Nutrient Network, also known as NutNet. Borer and Seabloom led a small group of scientists who created NutNet to standardize the way that ecology research is conducted. NutNet is a "grassroots campaign" that is supported by scientists who volunteer their time and resources. There are now 75 sites around the world that are run by more than 100 scientists participating in the NutNet experiment. "It's a great project and I'm happy to be a part of it," says Hautier. "The collaboration is fantastic."

NutNet scientists collected data for this study for three years, measuring plant growth in 41 sites on five continents, so the researchers feel confident that their results have global applications. "We can line it up and say - apples to apples - this is what's happening and it allows us to say it's a general effect. We know it's the same because we measured it in the same way in all these different places," says Lind. The group ultimately wants to continue experiments for at least ten years to gather information about long-term trends in plant species diversity and ecosystem stability, extinctions, species invasions, and many other important changes in the world's grasslands.

Stephanie Xenos | EurekAlert!
Further information:
http://www.umn.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>