Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turtles' mating habits protect against effects of climate change

25.01.2012
The mating habits of marine turtle may help to protect them against the effects of climate change, according to new research led by the University of Exeter.

Published today (25 January 2012) in the journal Proceedings of the Royal Society B, the study shows how the mating patterns of a population of endangered green turtles may be helping them deal with the fact that global warming is leading to a disproportionate number of females being born.

The gender of baby turtles is determined by the temperature of the eggs during incubation, with warmer temperatures leading to more females being born. Higher average global temperatures mean that offspring from some populations are predominantly female. This is threatening the future of some populations and there are concerns that inbreeding within groups due to a lack of males will lead to health problems.

The study focused on a population of the green turtle, Chelonia mydas, nesting in Northern Cyprus, where, due to the high summer temperatures, 95 per cent of babies are female. The study involved a team from the University of Exeter (UK), University of Lefke (Turkey) and North Cyprus Society for Protection of Turtles. Through DNA testing, they were able to ascertain the paternity of baby turtles and, contrary to what they had expected, they found a large number of mating males.

The researchers found that 28 males sired offspring with 20 nesting females: an average of 1.4 males for every female. This means that each female's offspring were sired by one or more fathers. The researchers were surprised to find no evidence that any males fathered offspring born in that season with more than one female.

The research team had thought that one single male might be breeding with multiple females. However, their results suggest that a large number of males are mating with different females at different times. This means that there is less chance of inbreeding.

The team also carried out satellite tracking to discover that males cover thousands of miles of ocean within one breeding season. This suggests they could have also been mating with females at other sites in Turkey or North Africa.

Lead researcher University of Exeter PhD student Lucy Wright said: "It is fantastic to know that there are so many males fathering offspring in this population of green turtles. There is great concern that a lack of males could lead to inbreeding in small populations of marine turtles, potentially causing a population crash. However our research suggests that there are more males out there than expected considering the female-biased hatchling sex ratios and that their mating patterns will buffer the population against any potential feminising effects of climate change."

Corresponding author Dr Annette Broderick added: "Climate change remains a great threat to marine turtles, but our ongoing research will help us focus on where the priority areas are for management that may help them cope with future change."

The work was funded by a NERC studentship with additional support from NERC Biomolecular Analysis Facility, Sheffield.

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>