Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trondheim to host five CO2 laboratories

13.01.2009
Europe is to invest NOK 730 million in joint European laboratories for CO2 capture and storage – and will use almost a third of the total in Norway. NTNU and SINTEF will coordinate the international effort, which will involve building five CO2 laboratories in Trondheim.

A cooperative body, whose members will be appointed by the ministers for research in the nations of the EU and the EEA, has decided that Europe will make a joint effort to build new CO2 laboratories.

The decision allocates a key role in this process to Norway:

Norway will be the host country for the effort, and five of the total of 15 joint laboratories will be built in this country, at a cost of NOK 210 million.

This sum, almost a quarter of a billion kroner, will go to laboratories that will be created at NTNU/SINTEF in Trondheim.

International cost-sharing

Since Norway is the host nation, the Norwegian authorities are expected to contribute between 30 and 50 percent of the total funding of NOK 720 million.

The effort will take the form of a shared-cost project that will involve the ministries of research of nine European countries.

“The laboratories will play a decisive role in ensuring that the world will be able to put into operation efficient technology for the capture, transportation and storage of CO2 from coal- and gas-fuelled power stations and industrial plants,” says Professor Arne Bredesen of NTNU, and Nils A. Røkke, SINTEF’s director of climate research.

Joint effort

Some types of laboratory are so expensive that it would not make sense to build one in each individual country.

The cooperative body ESFRI (European Strategy Forum on Research Infrastructures) therefore decides which laboratories it would be rational for European to set up as joint ventures.

The application that has now led ESFRI to go in for joint European laboratories for the development of CO2 capture and storage technology was led by NTNU and SINTEF.

Nine countries in cooperation

Nine countries supported the application, led by Norway as the host nation.

The go-ahead from ESFRI means that NTNU and SINTEF will coordinate the development of CO2laboratories at a total cost of €81 million (NOK 730 million) in Norway, Germany, France, Switzerland, the Netherlands, Hungary. Poland, Croatia and Denmark.

Trondheim laboratories will cost a quarter of a million kroner

Of this total, €23 million (NOK 210 million) will be invested in new CO2 laboratories in Norway; the five new laboratories will be built up at NTNU/SINTEF in Trondheim.

•An absorption laboratory (technology for scrubbing CO2 from flue-gases with the aid of chemicals) for €8 million (NOK 72 million)
•A materials and process technology laboratory for €4 million (NOK 36 million)
•A combustion technology laboratory for €4 million (NOK 36 million)
•A storage technology laboratory for €4 million (NOK 36 million)
•A refrigeration laboratory (technology for separating CO2 out of gas mixtures by freezing) for €3 million (NOK 27 million).

All of these laboratories will be equipped with a completely new generation of laboratory equipment, and they will be available to scientists from all EU and EEA countries.

Flattering declaration of confidence

The application led by NTNU and SINTEF was one of ten that passed through the needle’s eye in this year’s ESFRI’s evaluation process.

The initiative is known by the abbreviation ECCSEL, and was the only application in the field of energy research that was given the green light by the delegates.

“A flattering declaration of confidence for both of our institutions, and yet another piece of evidence that Norway has won a central place for itself in international climatology research,” say Professor Bredesen and research director Røkke.

Optimism ahead of the funding process

The nine participants in the project will be responsible for securing their own share of the funding themselves, by applying to their national authorities and to the EU Framework Programmes.

Professor Bredesen and climate research director Røkke are optimistic with regard to this process.

“It is well known that ESFRI does a very thorough job. It evaluates the proposals that it receives carefully in both global and European perspectives before they are added to its route map. Being selected in this way gives a project high status and sends out positive signals. Such a response from ESFRI is a serious sign to participating countries that this is an initiative that should be prioritised in their national budgets,” say Bredesen and Røkke.

“Team Norway”

For the past ten years, NTNU and SINTEF have had energy and environment as an area of special effort.

The two institutions have built up a significant level of research activity in this field, in close cooperation with the Research Council of Norway and Norwegian and overseas industry.

“The Research Council of Norway contacted us and asked us at NTNU and SINTEF to lead the task of drawing up an energy-related initiative for ESFRI’s route map. This resulted in the ECCSEL proposal, which has emerged thanks to excellent cooperation between NTNU and SINTEF, the Research Council of Norway and the Ministry of Education and Research. This has been a real ‘Team Norway’,” say NTNU’s Professor Bredesen and SINTEF’s climate research director Røkke.

THIS IS ESFRI:

ESFRI (European Strategy Forum on Research Infrastructures), which has given the go-ahead to the Norwegian CO2 laboratory initiative, was established in 2002 on the initiative of the European Commission.

ESFRI consists of the 27 members of the EU plus four associated members (Norway, Iceland, Liechtenstein and Switzerland). The ministers of research of each of these 31 countries appoint two national representatives to ESFRI.

The commission was set up with the aim of putting research infrastructure on the strategic map and helping to ensure that EU members and associated countries can coordinate the development of new and resources-intensive laboratories as efficiently as possible.

ESFRI consists of experts appointed by all EU member nations and the associated countries. Since they are all in good contact with their own national processes, national and European initiatives are well coordinated.

Several well-known laboratories that are currently under planning already come under the ESFRI umbrella. These include the European Extremely Large Telescope; the largest optical telescope in the world, which will come into operation in 2018 and will give European astronomers new possibilities of understanding the origin of the universe.

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>