Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Target Tackles Question of Nutrient Source in Watershed

23.01.2009
Researchers at the University of Arkansas have for the first time adopted a technique used in marine environments to examine the sources of excess nutrients found in streams in the Illinois River Watershed.

Graduate student Brian Breaker, with Erik Pollock, Brian Haggard of the Arkansas Water Resources Center and professor Phil Hays of the geosciences department and the U.S. Geological Survey, reported their preliminary findings at a recent meeting of the American Geophysical Union.

The Illinois River Watershed is the site of a mystery – high nutrient loads that have muddied the waters between Arkansas and Oklahoma. The nutrient loads themselves are not contested, but the source of these high amounts of nitrogen and phosphates are, and currently the sources of the nutrients are not explicitly identified.

Breaker and his colleagues are looking at oxygen isotopes of dissolved phosphates to try to identify the sources of the nutrients found in the watershed. Isotopes, or atoms of the same type but with slightly different weights, are found in plants, animals and organic matter. Different types of organic material have different isotope signatures, or unique proportions of a particular atom at a particular atomic weight. The researchers wanted to see if they could see a signature that varied between sources. If so, those signatures also might be seen in the nutrient loads downstream.

The researchers examined five different sources of potential nutrient loads in the watershed – soil derived phosphorus, septic system effluent, wastewater treatment plant effluent, poultry litter and commercial fertilizers. They collected water samples from the source and examined the oxygen isotopes of the phosphates contained in each one.

“We went straight to the point where we had a firm handle on the source,” Hays said. The researchers then took the samples to the laboratory, where they examined the oxygen isotope ratios found in the phosphates.

“We do indeed see a recognizable distinction between these sources,” Hays said.
The researchers continue to work in the watershed and plan to expand the project for further testing, collecting more environmental samples across a broader realm of ecosystems in the area.

“This could be a strong and effective method for managing nutrients,” Hays said. “It’s not a silver bullet. But it is another tool in the toolbox that can help clarify things.”

Phil Hays, professor, geosciences
J. William Fulbright College of Arts and Sciences
479-575-7343, pdhays@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>