Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface-Level Ozone Pollution Set to Reduce Tree Growth 10% by 2100

09.12.2008
Meta-Analysis of Decades of Experimental Evidence Highlights Worrying Trend

Modern day concentrations of ground level ozone pollution are decreasing the growth of trees in the northern and temperate mid-latitudes, as shown in a paper publishing today in Global Change Biology. Tree growth, measured in biomass, is already 7% less than the late 1800s, and this is set to increase to a 17% reduction by the end of the century.

Ozone pollution is four times greater now than prior to the Industrial Revolution in the mid-1700s; if modern dependence on fossil fuels continues at the current pace, future ozone concentrations will be at least double current levels by the end of this century with the capacity to further decrease the growth of trees.

The study is the first statistical summary of individual experimental measurements of how ozone will damage the productivity of trees, including data from 263 peer-reviewed scientific publications.

Ozone is the third strongest greenhouse gas, directly contributing to global warming, and is the air pollutant considered to be the most damaging to plants. But more importantly, it has the potential to leave more carbon dioxide, ranked as the first strongest greenhouse gas, in the atmosphere by decreasing carbon assimilation in trees. Ozone pollution occurs when nitrogen oxides have a photochemical reaction with volatile organic compounds.

“This research quantifies the mean response of trees to ozone pollution measured in terms of total tree biomass, and all component parts such as leaf, root and shoot, lost due to ozone pollution,” said Dr. Victoria Wittig, lead author of the study. “Looking at how ozone pollution affects trees is important because of the indirect impact on carbon dioxide concentrations in the atmosphere which will further enhance global warming, in addition to ozone’s already potent direct impact.”

In addition to ozone pollution reducing the strength of trees to hold carbon in the northern temperate mid-latitudes by reducing tree growth, the research also indicates that broad-leaf trees, such as poplars, are more sensitive to ozone pollution than conifers, such as pines, and that root growth is suppressed more than aboveground growth.

“Beyond the consequences for global warming, the study also infers that in mixed forests conifers will be favored over broad-leaved trees, and that the decrease in root size will increase the vulnerability to storms,” said Wittig.

Lucy Collister | alfa
Further information:
http://www3.interscience.wiley.com/journal/121482655/abstract

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>