Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study sheds light on how marine animals survive stress

Findings indicate how wildlife responds to environmental and ecological disasters

For marine iguanas living in the Galapagos Islands, an El Niño can be deadly. Some die from starvation while others survive. Scientists have long believed that the difference between life and death for the iguana depended on the animals' ability to secrete the stress hormone corticosterone.

Under stressful conditions, corticosterone functions like a spigot by controlling how the body expends energy during an emergency. It is associated with the "fight or flight" response to stress and is similar to cortisol in humans. But corticosterone can also be lethal if the spigot is not turned off, according to a study of marine iguanas published in the May 26 online issue of the Proceedings of the Royal Society.

The findings could provide insight into how wildlife in the Gulf of Mexico will respond to the current oil spill. Animals will secrete corticosterone to help them cope with the disaster. However, prolonged hormone production could factor into how well animals are able to survive the crisis.

From 2002 through 2008, a research team led by Tufts University Professor of Biology L. Michael Romero studied corticosterone levels in iguanas on Santa Fe Island before and after the El Niño that struck in late 2002.

The team, funded by the National Science Foundation, included co-author Martin Wikelski from the Max Planck Institute for Ornithology and Konstanz University.

The Galapagos Islands' marine iguanas are a suitable model for study because they live in predictable natural conditions. The animals feed exclusively on marine algae. Their greatest and almost only threat or stress occurs during recurrent El Niño-induced food shortages, when a decrease of algae can lead to starvation.

The scientists captured 98 healthy male iguanas on the island in December 2002, just weeks before the El Niño. They injected a group of the animals with a hormone to stimulate a biological process called negative feedback which lowers the natural corticosterone levels in the animals' blood. The animals responded in one of two ways. Some reacted by shutting shut down the release of corticosterone. In other iguanas, the secretion of corticosterone continued, producing excessive concentrations of the hormone in the blood.

Romero and Wikelski returned to Santa Fe Island in July 2003. Twenty-three of the animals had starved to death, but seventy-five had survived.

According to Romero, the dead iguanas were imperiled by their inability to turn off their stress response. This produced elevated corticosterone levels. In this condition, the animals had depleted the protein reserves that could be processed into energy during a stressful event. In their weakened condition, these iguanas were more susceptible to starvation than their counterparts.

Romero points to several major implications of the findings. First, negative feedback is a vital component of a successful stress response. "The results from the iguanas indicate that the better an individual is at coping with stress -- by turning off the response as soon as possible -- the better the chance they have to survive," he says.

The ultimate goal of the research, says Romero, is "to understand what causes stress in wild animals; what physiological mechanisms are turned on in response to stress and how those mechanisms help the animals survive in their natural habitats."

This work has immediate implications for the current oil spill in the Gulf of Mexico. "As animals encounter the spill, they will have a robust release of corticosterone to help them cope with the consequences of the oil," says Romero. "However, those animals that can best turn off their corticosterone response once the initial danger from the oil has passed will probably be the most likely to survive," he says.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alexander Reid | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>