Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staying Alive in the High and Dry: How Plants in Arid Lands Gain Nutrients to Survive

06.11.2013
The vast sagebrush landscapes of the western United States are one of the largest ecosystems in North America.

Long, cold winters and hot, dry summers characterize these cold desert ecosystems and create bone-dry soils during seasonal droughts. New research published this week from MBL (Marine Biological Laboratory) senior scientist Zoe Cardon, John Stark (Utah State University), and their two former students, sheds light on how desert plants gain nutrients they desperately need—even in the driest circumstances.


Field experiments were conducted in a remote area near Utah’s Bear Lake where the ecosystem’s productivity is limited by both water and nitrogen availability. Photo: Zoe Cardon

For the last nine years, Cardon and Stark have worked in northern Utah’s seasonally dry sagebrush steppe where the sagebrush’s deep root systems serve as conduits for water from deep, moist soil to extremely dry surface soil, even during the depths of drought. This “hydraulic lift” of soil water, through plant roots as pipes, has been detected in many seasonally dry ecosystems of the world. Water moves through roots upward from deep moist soil and is deposited in shallow parched soil at night, only to be taken up again by plant roots the following morning to support leaf function. Scientists have hypothesized that beyond enhancing water availability to plants, hydraulic lift might also play a role in delivering nutrients to plants by keeping the microbes responsible for decomposition and nutrient cycling hydrated, if only at night. Enhanced nutrient availability linked to hydraulic lift, however, had never been documented in the field.

To test the idea, Cardon and Stark conducted field experiments in a remote area of mature sageland near Utah’s Bear Lake, where the ecosystem’s productivity is limited by both water and nitrogen availability. With the help of nearly a dozen student and volunteer field technicians, the team hauled large water tanks, solar panels, a half-mile of irrigation tubing, and other equipment needed to set up their wilderness test plots.

Using a new gas-based labeling technique they developed specifically for tracing nitrogen cycling in very dry soil, they measured microbial nutrient cycling and availability of nitrogen to the sagebrush. “Existing techniques used liquid, which would have interfered with our experiment,” says Stark.

Through two hot summers, the team monitored the sagebrush and discovered hydraulic lift stimulated microbial activity and more than doubled the plants’ uptake of nitrogen from the surrounding surface soil at exactly the time they were flowering and setting seed.

“It’s a fascinating nutrient acquisition system relying on tiny amounts of water released from plant roots into dry soil at night,” explains Cardon. “That tiny flow of water is sustaining soil microbial community activity in the moistened sleeve of soil around sagebrush roots, and the microbes’ activities are the natural recycling system making nutrients available to the plants at exactly the time they are flowering and setting seeds.” Though microbes seem “high and dry” in surface soils in late summer, hydraulic lift delivers sips of sustaining water to fine roots and rhizosphere microbes, potentially supporting improved sagebrush seed set and even plant productivity in this nitrogen and water-limited ecosystem.

The scientists are now continuing the research at the MBL’s Research Greenhouse in Falmouth, Mass, where they are looking at the gene expression in the microbial communities around sagebrush roots that are carrying out the hydraulic lift and exploring how those communities respond to alternating periods of drier and wetter soil around sagebrush roots carrying out hydraulic lift. Greater understanding of hydraulic lift, the researchers say, could aid scientists and growers in finding ways to protect crops from the effects of prolonged drought.

“Microbes house the molecular machines that sustain life on Earth, recycling the nutrient building blocks that plants need to grow,” says Cardon. “Given how many billions of humans there are now on the planet, and how many more there will soon be, understanding the natural plant-microbe recycling systems that have evolved over the last 400 million years may well help humanity maintain the food, fuel, and wood production systems on which we depend.”

The results of the hydraulic lift experiment with sagebrush, the first investigation of its kind, are published in the November 4, 2013, online Early Edition of Proceedings of the National Academy of Sciences by Cardon, Stark, Patrick Herron (University of Connecticut), and Jed Rasmussen (University of Iowa). The team’s research was supported by the National Science Foundation and the U.S. Department of Energy.

Citation:
Cardon ZG, Stark JM, Herron PM, Rasmussen JA. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences. PNAS, published online November 4, 2013, doi: 10.1073/pnas.1311314110

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in Woods Hole, Massachusetts, in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>