Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staying Alive in the High and Dry: How Plants in Arid Lands Gain Nutrients to Survive

06.11.2013
The vast sagebrush landscapes of the western United States are one of the largest ecosystems in North America.

Long, cold winters and hot, dry summers characterize these cold desert ecosystems and create bone-dry soils during seasonal droughts. New research published this week from MBL (Marine Biological Laboratory) senior scientist Zoe Cardon, John Stark (Utah State University), and their two former students, sheds light on how desert plants gain nutrients they desperately need—even in the driest circumstances.


Field experiments were conducted in a remote area near Utah’s Bear Lake where the ecosystem’s productivity is limited by both water and nitrogen availability. Photo: Zoe Cardon

For the last nine years, Cardon and Stark have worked in northern Utah’s seasonally dry sagebrush steppe where the sagebrush’s deep root systems serve as conduits for water from deep, moist soil to extremely dry surface soil, even during the depths of drought. This “hydraulic lift” of soil water, through plant roots as pipes, has been detected in many seasonally dry ecosystems of the world. Water moves through roots upward from deep moist soil and is deposited in shallow parched soil at night, only to be taken up again by plant roots the following morning to support leaf function. Scientists have hypothesized that beyond enhancing water availability to plants, hydraulic lift might also play a role in delivering nutrients to plants by keeping the microbes responsible for decomposition and nutrient cycling hydrated, if only at night. Enhanced nutrient availability linked to hydraulic lift, however, had never been documented in the field.

To test the idea, Cardon and Stark conducted field experiments in a remote area of mature sageland near Utah’s Bear Lake, where the ecosystem’s productivity is limited by both water and nitrogen availability. With the help of nearly a dozen student and volunteer field technicians, the team hauled large water tanks, solar panels, a half-mile of irrigation tubing, and other equipment needed to set up their wilderness test plots.

Using a new gas-based labeling technique they developed specifically for tracing nitrogen cycling in very dry soil, they measured microbial nutrient cycling and availability of nitrogen to the sagebrush. “Existing techniques used liquid, which would have interfered with our experiment,” says Stark.

Through two hot summers, the team monitored the sagebrush and discovered hydraulic lift stimulated microbial activity and more than doubled the plants’ uptake of nitrogen from the surrounding surface soil at exactly the time they were flowering and setting seed.

“It’s a fascinating nutrient acquisition system relying on tiny amounts of water released from plant roots into dry soil at night,” explains Cardon. “That tiny flow of water is sustaining soil microbial community activity in the moistened sleeve of soil around sagebrush roots, and the microbes’ activities are the natural recycling system making nutrients available to the plants at exactly the time they are flowering and setting seeds.” Though microbes seem “high and dry” in surface soils in late summer, hydraulic lift delivers sips of sustaining water to fine roots and rhizosphere microbes, potentially supporting improved sagebrush seed set and even plant productivity in this nitrogen and water-limited ecosystem.

The scientists are now continuing the research at the MBL’s Research Greenhouse in Falmouth, Mass, where they are looking at the gene expression in the microbial communities around sagebrush roots that are carrying out the hydraulic lift and exploring how those communities respond to alternating periods of drier and wetter soil around sagebrush roots carrying out hydraulic lift. Greater understanding of hydraulic lift, the researchers say, could aid scientists and growers in finding ways to protect crops from the effects of prolonged drought.

“Microbes house the molecular machines that sustain life on Earth, recycling the nutrient building blocks that plants need to grow,” says Cardon. “Given how many billions of humans there are now on the planet, and how many more there will soon be, understanding the natural plant-microbe recycling systems that have evolved over the last 400 million years may well help humanity maintain the food, fuel, and wood production systems on which we depend.”

The results of the hydraulic lift experiment with sagebrush, the first investigation of its kind, are published in the November 4, 2013, online Early Edition of Proceedings of the National Academy of Sciences by Cardon, Stark, Patrick Herron (University of Connecticut), and Jed Rasmussen (University of Iowa). The team’s research was supported by the National Science Foundation and the U.S. Department of Energy.

Citation:
Cardon ZG, Stark JM, Herron PM, Rasmussen JA. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences. PNAS, published online November 4, 2013, doi: 10.1073/pnas.1311314110

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in Woods Hole, Massachusetts, in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>