Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stability in ecosystems: Asynchrony of species is more important than diversity

12.02.2016

Whether an animal or plant community remains stable despite external impacts does not depend on biological diversity alone: asynchrony across the species is also a crucial factor. The more asynchronous the species in an ecosystem fluctuate in their abundances, the less likely it becomes unstable. As a result, diversity takes second place in terms of the factors to be considered in the context of ecosystem stability. A team of scientists spearheaded by the TU Munich and TU Darmstadt have published these findings in the journal “Nature Communications”.

The long-term functioning of ecosystems depends on the stability of their species communities, as these ensure the functioning of the entire system. However, land use causes a reduction of the number of species in many ecosystems.


The abundance of species is subject to natural variations (dotted lines). If the abundance of species varies asynchronously, the abundance of the species community is stable.

Dr. M. Gossner/ TUM

Accordingly, when it comes to conserving species diversity and providing sustainable protection for natural resources, the stability of such animal and plant communities is the main goal of nature conservation and ecosystem management. In principle, higher species diversity and greater asynchrony can increase the stability of the species community. But if land use is intensified or changed, which of these factors – species diversity or asynchrony – is more important?

Six-year-plus study on over 2,600 species

For their study, the researchers evaluated over 2,600 species ranging from insects and spiders, to birds and bats and through to herbaceous plants over a period of six years. Data from 150 forests and 150 pastures and meadows located in three regions in Germany were collated. “The results show that a change in the use of a landscape, for example when a managed forest is converted into grassland, destabilizes the animal and plant community,” explains Dr. Martin Goßner from the Terrestrial Ecology Research Group at the TU Munich.

“Similarly, the intensification of land use results in the destabilization of the animal and plant community and this, in turn, impairs the entire ecosystem,” adds Dr. Nadja Simons (also from the TU Munich). Animal communities presented a stronger reaction here than their plant counterparts. The most severe reaction by far was observed among birds and bats, which can therefore be seen as indicators of land-use intensity.

The more asynchronous the species, the more stable the ecosystem

What is new about the insights gained in this study is the extent to which the asynchrony of the species can increase the stable interplay of animals and plants in an ecosystem: “The more asynchronously the species develop and act, the more stable the system,” says Prof. Nico Blüthgen from the Department of Biology at TU Darmstadt. “We can compare it to the stock exchange, where risk-averse investors are encouraged not to put all their eggs in one basket and to create a portfolio of different securities instead.

This is referred to as the portfolio effect. And, just as in nature, in order to cushion the impact of fluctuations in the investments over time, it is important that the portfolio not only contains a lot of investments but also different types of investments.” Asynchrony thus assumes a key role in the interaction between diversity and stability. The scientists plan to investigate the factors that lead to greater asynchrony in further studies.

This joint project by several research groups was the most comprehensive study on the topic of stability to date and was carried out in the context of the “Biodiversity Exploratories” research alliance. This alliance is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). One of its express aims is to facilitate long-term studies of this kind, as impacts on the stability of ecosystems can only be studied effectively from a long-term perspective.

The following universities participated in the research:
• TU Munich
• TU Darmstadt
• Ulm University
• University of Bern
• University of Vienna
• WWU Münster

Publication:

Nico Bluethgen, Nadja K. Simons, Kirsten Jung, Daniel Prati, Swen C. Renner, Steffen Boch, Markus Fischer, Norbert Hoelzel, Valentin H. Klaus, Till Kleinebecker, Marco Tschapka, Wolfgang W. Weisser & Martin M. Gossner: Land use imperils plant and animal community stability through changes in asynchrony rather than diversity, 12.2.16.
DOI: 10.1038/ncomms10697

Download High-Res. Pictures: https://mediatum.ub.tum.de/?id=1293350#1293350

Contact:
Dr. Martin Goßner, Dr. Nadja Simons
Technical University of Munich
Department for Ecology and Ecosystem Management
Terrestrial Ecology Research Group
Hans-Carl-von-Carlowitz-Platz 2
85354 Freising
Tel.: +49(0)8161-71-3713
E-Mail: martin.gossner@tum.de
nadja.simons@tum.de

Prof. Dr. Nico Blüthgen
Department of Biology
Technical University of Darmstadt
Schnittspahnstr. 3
64287 Darmstadt
E-Mail: bluethgen@bio.tu-darmstadt.de

Prof. Dr. Wolfgang W. Weisser
Technical University of Munich
Department for Ecology and Ecosystem ManagementTerrestrial Ecology Research Group
Hans-Carl-von-Carlowitz-Platz 2
D-85354 Freising
Tel: 08161-71-3496/ -3495
E-Mail: wolfgang.weisser@tum.de

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/32938/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Department of Biology Ecosystem ecosystems species diversity

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>