Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stability in ecosystems: Asynchrony of species is more important than diversity

12.02.2016

Whether an animal or plant community remains stable despite external impacts does not depend on biological diversity alone: asynchrony across the species is also a crucial factor. The more asynchronous the species in an ecosystem fluctuate in their abundances, the less likely it becomes unstable. As a result, diversity takes second place in terms of the factors to be considered in the context of ecosystem stability. A team of scientists spearheaded by the TU Munich and TU Darmstadt have published these findings in the journal “Nature Communications”.

The long-term functioning of ecosystems depends on the stability of their species communities, as these ensure the functioning of the entire system. However, land use causes a reduction of the number of species in many ecosystems.


The abundance of species is subject to natural variations (dotted lines). If the abundance of species varies asynchronously, the abundance of the species community is stable.

Dr. M. Gossner/ TUM

Accordingly, when it comes to conserving species diversity and providing sustainable protection for natural resources, the stability of such animal and plant communities is the main goal of nature conservation and ecosystem management. In principle, higher species diversity and greater asynchrony can increase the stability of the species community. But if land use is intensified or changed, which of these factors – species diversity or asynchrony – is more important?

Six-year-plus study on over 2,600 species

For their study, the researchers evaluated over 2,600 species ranging from insects and spiders, to birds and bats and through to herbaceous plants over a period of six years. Data from 150 forests and 150 pastures and meadows located in three regions in Germany were collated. “The results show that a change in the use of a landscape, for example when a managed forest is converted into grassland, destabilizes the animal and plant community,” explains Dr. Martin Goßner from the Terrestrial Ecology Research Group at the TU Munich.

“Similarly, the intensification of land use results in the destabilization of the animal and plant community and this, in turn, impairs the entire ecosystem,” adds Dr. Nadja Simons (also from the TU Munich). Animal communities presented a stronger reaction here than their plant counterparts. The most severe reaction by far was observed among birds and bats, which can therefore be seen as indicators of land-use intensity.

The more asynchronous the species, the more stable the ecosystem

What is new about the insights gained in this study is the extent to which the asynchrony of the species can increase the stable interplay of animals and plants in an ecosystem: “The more asynchronously the species develop and act, the more stable the system,” says Prof. Nico Blüthgen from the Department of Biology at TU Darmstadt. “We can compare it to the stock exchange, where risk-averse investors are encouraged not to put all their eggs in one basket and to create a portfolio of different securities instead.

This is referred to as the portfolio effect. And, just as in nature, in order to cushion the impact of fluctuations in the investments over time, it is important that the portfolio not only contains a lot of investments but also different types of investments.” Asynchrony thus assumes a key role in the interaction between diversity and stability. The scientists plan to investigate the factors that lead to greater asynchrony in further studies.

This joint project by several research groups was the most comprehensive study on the topic of stability to date and was carried out in the context of the “Biodiversity Exploratories” research alliance. This alliance is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). One of its express aims is to facilitate long-term studies of this kind, as impacts on the stability of ecosystems can only be studied effectively from a long-term perspective.

The following universities participated in the research:
• TU Munich
• TU Darmstadt
• Ulm University
• University of Bern
• University of Vienna
• WWU Münster

Publication:

Nico Bluethgen, Nadja K. Simons, Kirsten Jung, Daniel Prati, Swen C. Renner, Steffen Boch, Markus Fischer, Norbert Hoelzel, Valentin H. Klaus, Till Kleinebecker, Marco Tschapka, Wolfgang W. Weisser & Martin M. Gossner: Land use imperils plant and animal community stability through changes in asynchrony rather than diversity, 12.2.16.
DOI: 10.1038/ncomms10697

Download High-Res. Pictures: https://mediatum.ub.tum.de/?id=1293350#1293350

Contact:
Dr. Martin Goßner, Dr. Nadja Simons
Technical University of Munich
Department for Ecology and Ecosystem Management
Terrestrial Ecology Research Group
Hans-Carl-von-Carlowitz-Platz 2
85354 Freising
Tel.: +49(0)8161-71-3713
E-Mail: martin.gossner@tum.de
nadja.simons@tum.de

Prof. Dr. Nico Blüthgen
Department of Biology
Technical University of Darmstadt
Schnittspahnstr. 3
64287 Darmstadt
E-Mail: bluethgen@bio.tu-darmstadt.de

Prof. Dr. Wolfgang W. Weisser
Technical University of Munich
Department for Ecology and Ecosystem ManagementTerrestrial Ecology Research Group
Hans-Carl-von-Carlowitz-Platz 2
D-85354 Freising
Tel: 08161-71-3496/ -3495
E-Mail: wolfgang.weisser@tum.de

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/32938/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Department of Biology Ecosystem ecosystems species diversity

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>