Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists warn that a long term strategy is needed for reducing greenhouse gas emissions

30.10.2008
Carbon dioxide, the greenhouse gas that has had the largest impact on our climate, will continue to rise even if current national and international targets for reducing emissions are met, scientists warn. But, they say, strong action taken now– such as the 80% target recently announced by the UK government – will continue to have benefits a long time into the future.

A group of scientists have, for the first time, combined the outcomes of proposals by the G8 countries and the UK Government’s Stern Review with the latest knowledge of climate change feedbacks relating to the carbon cycle (the way carbon moves between the oceans, atmosphere and land).

Their findings, published in Environmental Research Letters, show that short-term cuts alone will not solve the problem and that policy makers need to plan for hundreds of years into the future.

Jo House, from the Natural Environment Research Council’s QUEST programme at the University of Bristol, led the research. She says, “To be able to predict the climatic impact of various levels of emissions we need to know, and account for, what happens to the greenhouse gases once they enter the atmosphere. Gases such as methane or nitrous oxide only remain in the atmosphere for a few years or decades. Carbon dioxide is a different matter as a portion of emitted gas stays in the atmosphere for thousands of years. “

“Furthermore, as the climate changes, a larger proportion of the carbon dioxide will remain in the atmosphere. Carbon dioxide is taken up by land and ocean sinks, which become less effective as the climate warms, leading to even greater warming for a given level of emissions – this is known as climate feedback. Our calculations demonstrate the level of emissions reduction we need to achieve to limit climate change to below what is considered ‘dangerous’.”

Working alongside colleagues from the NERC Centre for Ecology and Hydrology, the Met Office Hadley Centre and the University of Exeter, Jo House ran computer models to see what would happen under the G8 plans to cut global emissions by 50% by 2050. The models show that under this scenario, unless emissions cuts continue beyond 2050, atmospheric carbon dioxide concentrations will continue to rise rapidly.

By 2100 the models suggest that carbon dioxide concentrations could be as high as 590 parts per million (ppm) – more than double the level of 280ppm that persisted for thousands of years before the industrial revolution, and significantly higher than today’s level, caused by the burning of fossil fuels and deforestation, of 386ppm. By 2300 the worst-case scenario shows that carbon dioxide levels could be 980ppm with an accompanying rise in global temperature of 5.7°C. (The European Union has taken the stance in international climate negotiations that climate change should be limited to 2°C to avoid “dangerous impacts”)

Using the Stern Review proposal, of cutting emissions by 25% by 2050 and continuing to make cuts down to 80% towards the end of the century, the models show a more hopeful future. In this case the carbon dioxide levels would become almost stable, at levels of between 500 and 600ppm by 2100, although they would creep up further into the future if greater cuts were not made. In this case the temperature by 2100 ranges between 1.4 and 3.4 °C depending on the model used, and by 2300 it is also almost stable with a maximum of 4.2 °C.

The Stern Review concluded that, to avoid the worst impacts of climate change, the concentrations of all greenhouse gases should be limited to what is equivalent to between 450 and 550ppm of carbon dioxide concentration.

House and her colleagues say that making cuts in other greenhouse gases is no good if the longer term problem of atmospheric carbon dioxide is ignored.

“To achieve long-term stabilisation of carbon dioxide levels at around 550ppm will require cuts in global emissions of between 81% and 90% by 2300, and even more beyond that time. We applaud the government’s new plans to cut UK emissions by 80% by 2050. This is a realistic assessment of the scale of the problem and the action needed,” says House. “Our research confirms that bringing other countries on board to meet a global target of 80% reductions towards the end of the century will virtually stabilise carbon dioxide levels, but a much longer-term strategy is still needed to reduce future emissions even further,” .

She adds, “Tackling the problem of global warming seems even more daunting when climate change feedbacks are taken into account, but we shouldn’t feel despondent and give up on the challenge. It should encourage us to carry on making cuts in emissions, however small they seem to start with, because whatever we do now will have a beneficial long-term legacy.”

The research was supported by the Natural Environment Research Council through the QUEST Programme and the Centre for Ecology & Hydrology, and by the Joint Defra/ MoD Integrated Climate Change Programme.

Marion O'Sullivan | alfa
Further information:
http://www.nerc.ac.uk
http://www.nerc.ac.uk/research/programmes/quest/

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>