Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Reveal Soot’s Role in Climate Change

18.08.2008
Soot, or aerosols, can have both heating and cooling effects on clouds. Weizmann Institute scientists and colleagues have now developed a model of this complex relationship, showing when aerosols rising into the clouds will result in heating or cooling. Their findings may help convey the true climatic consequences of fires and industrial fuels.

Tons of soot are released into the air annually as forest fires rage from California to the Amazon to Siberia and Indonesia.

Climate scientists have generally assumed that the main effect of smoke on climate is cooling, as the floating particles can reflect some solar energy back to space as well as increasing cloud size and lifespan. But new research by scientists at the Weizmann Institute of Science; the University of Maryland, Baltimore County (UMBC); and NASA may cause them to rethink soot’s role in shaping the Earth’s climate.

Airborne particles such as soot – known collectively as aerosols – rise into the atmosphere where they interact with clouds. Understanding what happens when the two meet is extremely complicated, in part because clouds are highly dynamic systems that both reflect the sun’s energy back into space, cooling the upper atmosphere, and trap heat underneath, warming the lower atmosphere and the Earth’s surface. Aerosols, in turn, can have both heating and cooling effects on clouds. On the one hand, water droplets form around the aerosol particles, which may extend the cloud cover. On the other hand, particles, especially soot, absorb the sun’s radiation, stabilizing the atmosphere and thus reducing cloud formation.

Dr. Ilan Koren and Hila Afargan of the Weizmann Institute’s Environmental Sciences and Energy Research Department, together with colleagues from UMBC and NASA’s Goddard Space Flight Center in Maryland, have, for the first time, developed an analytical model that puts all of these factors together to show when aerosols rising into the clouds will heat things up and when they will cool them off. The scientists tested their model on data from the Amazon, finding it reflected the true situation on the ground so accurately they could rule out the possibility that random changes in cloud cover – rather than aerosols from burning forests – were at work.

Their findings, which appear in the August 15, 2008 issue of Science, reveal that adding small quantities of aerosols into a clean environment can indeed produce a net cooling effect. As more and more particles enter the cloud layer, however, the effect progressively switches from cooling to heating mode. The researchers also found that the extent of the original cloud cover is important. A completely overcast sky prevents the sun’s rays from reaching the aerosols, so the result may be additional cooling of the atmosphere and the Earth’s surface. But the larger the ratio of open sky to clouds, the more aerosol particles absorb radiation, thus hastening the heating of the remaining cloud cover, reducing cloud cover, and heating the system.

An accurate model of the intricate relationship between clouds and aerosols has been a key missing piece in the picture of human-induced climate change. The scientists believe their findings may help both climate modelers and policy makers to understand the true climatic consequences of burning trees or sooty industrial fuels.

Dr. Ilan Koren’s research is supported by the Sussman Family Center for the Study of Environmental Sciences; the Fusfeld Research Fund; and the Samuel M. Soref and Helene K. Soref Foundation.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>