Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists publish the discoveries that saved the large blue butterfly

16.06.2009
Study may aid rescue missions for other endangered butterflies, researchers say in the journal Science

On the 25th anniversary of the project that brought the large blue butterfly back from extinction in the United Kingdom, ecologists are for the first time publishing the decades of research that helped them rescue this spectacular butterfly.

The study shows how the large blue's extreme dependence on a single ant species led to the butterflies' demise, as their habitat became overgrown, causing soil temperatures to drop and ant numbers to diminish. Before this discovery, butterfly collectors were generally blamed for the decline of this butterfly, also known as Maculinea arion.

The research, by Jeremy Thomas of the University of Oxford in Oxford, UK and the Centre for Ecology and Hydrology in Wallingford, and his colleagues, will be published online by Science, at the Science Express website, on 18 June 2009. Science is published by AAAS, the nonprofit, international science society.

"This study tells the story of a remarkable, 40-year research effort that began with painstaking fieldwork -- including the counting of individual butterfly eggs laid on flowers in the English countryside -- and culminated with a major conservation victory. Science is delighted to be publishing this impressive body of work, and we expect that the peer-reviewed data will be an important tool for future conservation efforts," said Andrew Sugden, Deputy and International Managing Editor at Science.

"Human beings are so much larger than insects, it's very hard for us to appreciate that what to us is an imperceptible change in habitat can have devastating consequences for a species like the bizarre and beautiful large blue butterfly. A difference of a centimeter in grass length can change the soil temperature by 2 or 3 degrees C. If you're the size of an ant or butterfly that difference is massive," said Thomas.

In the 1970s, the International Union for Conservation of Nature selected three butterflies, including the large blue, as global flagships for the cause of lepidopteran conservation. These insects and others had been mysteriously disappearing for decades, despite attempts to save them.

The large blue butterfly was selected because of its beauty and prize-status for collectors, and because of its unusual life cycle, according to Thomas.

Adult M. arion females lay their eggs on thyme flowers in the summer. After hatching, the caterpillars stay very small and many eventually fall to the ground. They secrete chemicals that attract red ants and fool them into thinking the caterpillars are ant grubs. The ants then carry the tiny caterpillars into their underground nests.

In most cases, only caterpillars that have landed in the nest of one particular ant species, Myrmica sabuleti, will survive to adulthood. The caterpillars' secretions are a sufficiently close match to those of M. sabuleti grubs that the ants never discover that they have been duped, and instead continue to protect the caterpillars for 10 months even though they are feeding on the ants' own brood. In early June, the caterpillars form a chrysalis near the colony entrance and then emerge to crawl aboveground two weeks later as butterflies.

While ecologists generally knew about this life cycle, the butterfly's intense dependence on M. sabuleti ants only came to light once Thomas began studying Britain's last surviving large blue butterfly colony.

"It was the nearest insect equivalent to living with the apes, I suppose," said Thomas.

"From May to late September, I was living with the last UK colony, measuring everything, including their behavior, how many eggs they laid, the survival of individual eggs, how many caterpillars were in the plants. It was a bit like a detective story."

The butterflies finally disappeared from Britain in 1979.

Thomas compiled this information into life tables, which show the number of new eggs and those that survived each year from 1972 to 1977, and which are now being published for the first time in the Science study.

With these field data, Thomas and his coauthors explored the possible factors that could be causing the butterflies decline. They realized that the grass in the butterflies' habitat had grown too long, as farmers had gradually stopped grazing their livestock on these hillsides and a viral infection had killed many of the wild rabbits in the 1950s.

The soil on these overgrown grasslands was therefore too cool to support adequate numbers of M. sabuleti ants. And, without enough ants to raise their young, the large blue butterflies dwindled. The researchers combined these ecological relationships into a numerical model, which is also being published for the first time in the Science study.

"I've been saving this paper up, as it were, for 25 years. None of the data points have been published. The life-cycle data and the life tables generated a model upon which all our conservation efforts were based. The description of this model is also new. There are few known examples of a model being able to predict the success of a conservation effort as well as ours did, for any insect," Thomas said.

In the late 1970s, after 40 years of trying to save the large blue by fending off butterfly collectors, conservationists followed Thomas' recommendations and restored the butterfly's proper habitat by clearing scrub and reintroducing grazing animals.

Starting in 1983, Thomas and his colleagues began introducing large blue butterflies imported from Sweden, into restored habitat sites. As of 2008, the butterflies occupied 30 percent more colonies than they had in the 1950s, before the major decline began. The large blue is now one of just three UK butterflies on course to meet the Convention of Biological Diversity's target to reverse species' declines by 2010. This rebound has closely followed the predictions generated by Thomas' model.

The picture in the rest of Europe is hazier, with the butterflies faring better in some countries than others. The data in this paper lay out the basis for similar restoration efforts for other butterflies with specific host requirements, such as the four related, globally threatened, species of large blue that are already starting to benefit from this approach across Europe, and the recovery of the Adonis blue butterfly from the brink of national extinction in the UK, according to Thomas.

He said that, while conservation efforts used to tend to focus on adult butterflies, this research has shown that the needs of juveniles are often much more specific and can primarily drive a population's overall health. Being aware of this fact may allow ecologists to take a shortcut around compiling the time-consuming life tables that are traditionally the first step in understanding why a species is declining.

Restoring the large blue's habitat may also provide collateral benefits for other species that live there, the authors speculate in their study. On some of its conservation sites there have already been dramatic increases in rare birds, plants and other butterflies, such as the wood lark, pale heath violet and the pearl-bordered fritillary, Thomas said.

Prof. Thomas' coauthors are David Simcox of the Centre for Ecology and Hydrology in Wallingford, UK and Ralph Clarke of the Centre for Ecology and Hydrology in Wallingford, UK and Bournemouth University in Poole, UK. The paper is entitled, "Successful Conservation of a Threatened Maculinea Butterfly."

This research was funded by EU Macman and Biodiversa (CLIMIT) programs, Natural England, CEH, National Trust, Somerset Wildlife Trust, Network Rail, J&F Clark Trust, Butterfly Conservation, Gloucester Wildlife Trust, Millfield School, Defra, WWF, Sir Terence Conran, Holland & Barrett, Hydrex, ICI, and R Mattoni.

The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society, and publisher of the journal Science (www.sciencemag.org). AAAS was founded in 1848, and serves some 262 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of one million. The nonprofit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org

Further reports about: AAAS Conservation Science Ecology Science TV Wildlife butterfly hydrology scientists

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

Researchers make flexible glass for tiny medical devices

24.03.2017 | Materials Sciences

Laser activated gold pyramids could deliver drugs, DNA into cells without harm

24.03.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>