Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists say ocean currents cause microbes to filter light

25.02.2011
Adding particles to liquids to make currents visible is a common practice in the study of fluid mechanics, one that was adopted and perfected by artist Paul Matisse in sculptures he calls Kalliroscopes.

Matisse’s glass-enclosed liquid sculptures contain an object whose movement through the liquid creates whorls that can be seen only because elongated particles trailing the object align with the direction of the current; light reflects off the particles, making the current visible to the viewer.

Researchers at MIT recently demonstrated that this same phenomenon is responsible for the swirling patterns scientists typically see when they agitate a flask containing microbes in water; many microbes are themselves elongated particles that make the whorls visible. More importantly, they say this phenomenon occurs in the ocean when elongated microbes caught in a current align horizontally with the ocean surface, affecting how much light goes into the ocean and how much bounces off as backscatter. Because many ocean microbes, like large phytoplankton, have either an elongated shape or live in communities of long chains, this orientation to ocean currents could have a substantial effect on ocean light — which in turn influences photosynthesis and phytoplankton growth rates — as well as on satellite readings of light backscatter used to inform climate models or assess algal blooms.

In a quiescent ocean, phytoplankton are randomly oriented and light filters through easily. This random arrangement is usually assumed in models of light propagation in the ocean and in satellite readings. But fluid flow can change things.

“Even small shear rates can increase backscattering from blooms of large phytoplankton by more than 30 percent,” said Roman Stocker, Professor of Civil and Environmental Engineering at MIT and lead author on a paper about this work. “This implies that fluid flow, which is typically neglected in models of marine optics, may exert an important control on light propagation, influencing the rates of carbon fixation and how we estimate these rates via remote sensing.”

Another consideration is microbial size. Very small microbes (less than 1 micrometer in diameter) don’t align with the ocean current no matter what their shape. “These very small things don’t align because they are too vigorously kicked around by water molecules in an effect called Brownian motion,” said Stocker, who studies the biomechanics of the movements of ocean microbes, often in his own micro-version of a Kalliroscope called microfluidics. He recreates an ocean environment in microfluidic devices about the size of a stick of gum and uses videomicroscopy to trace and record the microbes’ movements in response to food and current.

In this case, however, the research methodology was observation, followed by mathematical modeling (much of which was handled by graduate student Marcos, who created a model that coupled fluid mechanics with optics), and subsequent experimentation carried out by graduate students Mitul Luhar and William Durham using a tabletop-sized device.

But the impetus for the research was an observance of swirling microbes in a flask of water and a question posed by Justin Seymour, a former postdoctoral fellow at MIT. “Justin walked up to me with a flask of microbes in water, shook it, and asked me what the swirls were,” said Stocker. “Now we know.”

In addition to Seymour, who is now a research fellow at the University of Technology Sydney, other co-authors on the paper are Marcos, Luhar and Durham; Professor James Mitchell of Flinders University in Adelaide, Australia; and Professor Andreas Macke of the Leibniz Institute for Tropospheric Research in Germany.

Next steps: The researchers plan to test this mechanism in the field in a local environment suitable for experimentation, most likely a nearby lake.

Funding: Funding was provided by grants from the National Science Foundation and the Australian Research Council and by a Hayashi Grant from MIT’s International Science and Technology Initiatives Program.

Source: “Microbial alignment in flow changes ocean light climate,” by Marcos, Justin Seymour, Mitul Luhar, William Durham, James Mitchell, Andreas Macke and Roman Stocker, in PNAS Early Edition online Feb. 21, 2011.

Written by: Denise Brehm, Civil and Environmental Engineering

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu
http://web.mit.edu/press/2011/stocker-microbes.html

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>