Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists say ocean currents cause microbes to filter light

Adding particles to liquids to make currents visible is a common practice in the study of fluid mechanics, one that was adopted and perfected by artist Paul Matisse in sculptures he calls Kalliroscopes.

Matisse’s glass-enclosed liquid sculptures contain an object whose movement through the liquid creates whorls that can be seen only because elongated particles trailing the object align with the direction of the current; light reflects off the particles, making the current visible to the viewer.

Researchers at MIT recently demonstrated that this same phenomenon is responsible for the swirling patterns scientists typically see when they agitate a flask containing microbes in water; many microbes are themselves elongated particles that make the whorls visible. More importantly, they say this phenomenon occurs in the ocean when elongated microbes caught in a current align horizontally with the ocean surface, affecting how much light goes into the ocean and how much bounces off as backscatter. Because many ocean microbes, like large phytoplankton, have either an elongated shape or live in communities of long chains, this orientation to ocean currents could have a substantial effect on ocean light — which in turn influences photosynthesis and phytoplankton growth rates — as well as on satellite readings of light backscatter used to inform climate models or assess algal blooms.

In a quiescent ocean, phytoplankton are randomly oriented and light filters through easily. This random arrangement is usually assumed in models of light propagation in the ocean and in satellite readings. But fluid flow can change things.

“Even small shear rates can increase backscattering from blooms of large phytoplankton by more than 30 percent,” said Roman Stocker, Professor of Civil and Environmental Engineering at MIT and lead author on a paper about this work. “This implies that fluid flow, which is typically neglected in models of marine optics, may exert an important control on light propagation, influencing the rates of carbon fixation and how we estimate these rates via remote sensing.”

Another consideration is microbial size. Very small microbes (less than 1 micrometer in diameter) don’t align with the ocean current no matter what their shape. “These very small things don’t align because they are too vigorously kicked around by water molecules in an effect called Brownian motion,” said Stocker, who studies the biomechanics of the movements of ocean microbes, often in his own micro-version of a Kalliroscope called microfluidics. He recreates an ocean environment in microfluidic devices about the size of a stick of gum and uses videomicroscopy to trace and record the microbes’ movements in response to food and current.

In this case, however, the research methodology was observation, followed by mathematical modeling (much of which was handled by graduate student Marcos, who created a model that coupled fluid mechanics with optics), and subsequent experimentation carried out by graduate students Mitul Luhar and William Durham using a tabletop-sized device.

But the impetus for the research was an observance of swirling microbes in a flask of water and a question posed by Justin Seymour, a former postdoctoral fellow at MIT. “Justin walked up to me with a flask of microbes in water, shook it, and asked me what the swirls were,” said Stocker. “Now we know.”

In addition to Seymour, who is now a research fellow at the University of Technology Sydney, other co-authors on the paper are Marcos, Luhar and Durham; Professor James Mitchell of Flinders University in Adelaide, Australia; and Professor Andreas Macke of the Leibniz Institute for Tropospheric Research in Germany.

Next steps: The researchers plan to test this mechanism in the field in a local environment suitable for experimentation, most likely a nearby lake.

Funding: Funding was provided by grants from the National Science Foundation and the Australian Research Council and by a Hayashi Grant from MIT’s International Science and Technology Initiatives Program.

Source: “Microbial alignment in flow changes ocean light climate,” by Marcos, Justin Seymour, Mitul Luhar, William Durham, James Mitchell, Andreas Macke and Roman Stocker, in PNAS Early Edition online Feb. 21, 2011.

Written by: Denise Brehm, Civil and Environmental Engineering

Denise Brehm | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>