Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientific sub makes deep-sea discoveries

21.01.2009
A four-week expedition to explore the deep ocean south-west of Tasmania has revealed new species of animals and more evidence of impacts of increasing carbon dioxide on deep-sea corals.

The collaborative voyage of US and Australian researchers was led by chief scientists Dr Jess Adkins from the California Institute of Technology and Dr Ron Thresher from CSIRO’s Climate Adaptation and Wealth from Oceans Flagships.

“We set out to search for life deeper than any previous voyage in Australian waters,” Dr Thresher says. “We also gathered data to assess the threat posed by ocean acidification and climate change on Australia’s unique deep-water coral reefs.”

The survey through the Tasman Fracture Commonwealth Marine Reserve, south-west of Tasmania, explored the near vertical slice in the earth’s crust, known as the Tasman Fracture Zone, which drops from approximately 2000 metres to over 4000 metres.

“Our sampling documented the deepest known Australian fauna, including a bizarre carnivorous sea squirt, sea spiders and giant sponges, and previously unknown marine communities dominated by gooseneck barnacles and millions of round, purple-spotted sea anemones.”

All of these new species are located more than 2000 metres below the surface.

Vast fields of fossil corals were discovered below 1400 metres, and dated to more than 10,000 years old. The samples collected will be used to determine the periods over the last millions of years when reefs have existed south of Tasmania. They will also provide ancient climate data that contribute to models of regional and global climate change, based on historical circulation patterns in the Southern Ocean.

“Our sampling documented the deepest known Australian fauna, including a bizarre carnivorous sea squirt, sea spiders and giant sponges, and previously unknown marine communities dominated by gooseneck barnacles and millions of round, purple-spotted sea anemones.”Modern-day deep-water coral reefs were also found, however there is strong evidence that this reef system is dying, with most reef-forming coral deeper than 1300 metres newly dead.

“We need to closely analyse the samples and measurements we collected before we can determine what’s caused this, as it could be the result of several factors, such as ocean warming, disease or increasing ocean acidity,” Dr Thresher says.

“Mathematical models predict that we could be seeing impacts of ocean acidification in this region. If our analysis identifies this phenomenon as the cause of the reef system’s demise, then the impact we are seeing now below 1300 metres might extend to the shallower portions of the deep-reefs over the next 50 years, threatening this entire community.”

The international research team aboard the research vessel RV Thomas G. Thompson deployed a deep diving, remotely operated submarine vehicle named Jason, belonging to the Woods Hole Oceanographic Institution. Jason, which is approximately the size of a small car, is capable of collecting samples and data, and photographing and filming areas as deep as 6000 metres. Jason made 14 dives lasting up to 48 hours each and reaching a maximum depth of 4010 metres.

The A$2m cost of bringing the RV Thompson and Jason to Australia was met by the US National Science Foundation (NSF). The research was also supported by: the Australian Department of Environment, Water, Heritage and Arts; CSIRO and the Commonwealth Environmental Research Facility (CERF) Marine Biodiversity Hub.

National Research Flagships

CSIRO initiated the National Research Flagships to provide science-based solutions in response to Australia’s major research challenges and opportunities. The nine Flagships form multidisciplinary teams with industry and the research community to deliver impact and benefits for Australia.

Edwina Hollander | EurekAlert!
Further information:
http://www.csiro.au
http://www.csiro.au/news/Deep-Sea-Expedition.html

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>