Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New scientific field will study ecological importance of sounds

02.03.2011
A Purdue University researcher is leading an effort to create a new scientific field that will use sound as a way to understand the ecological characteristics of a landscape and to reconnect people with the importance of natural sounds.

Soundscape ecology, as it's being called, will focus on what sounds can tell people about an area. Bryan Pijanowski, an associate professor of forestry and natural resources and lead author of a paper outlining the field in the journal BioScience, said natural sound could be used like a canary in a coal mine. Sound could be a critical first indicator of environmental changes.

Pijanowski said sound could be used to detect early changes in climate, weather patterns, the presence of pollution or other alterations to a landscape.

"The dawn and dusk choruses of birds are very characteristic of a location. If the intensity or patterns of these choruses change, there is likely something causing that change," Pijanowski said. "Ecologists have ignored how sound that emanates from an area can help determine what's happening to the ecosystem."

Part of his research will be to capture sounds that are being lost and attempting to restore their value to people. Pijanowski said natural sounds such as birds chirping, wind rustling through leaves and even the absence of noise not only have aesthetic significance, but also can give people valuable information about what's happening around them.

Pijanowski has already begun some of the soundscape ecology work in various natural and human-dominated landscapes around Tippecanoe County in Indiana. More than 35,000 recordings were used to characterize the rhythms of the natural sound and how varying degrees of human development affected those rhythms. One of the most significant findings was that as human impact in the landscape increases, the natural rhythms of sound created by the diverse wildlife population are replaced by low and constant human-produced noise.

"As we continue to become more and more urban, we get used to the urban sounds which are mostly just noise. We're so used to blocking out noise that we block out the natural sounds as well," Pijanowski said. "Animals create sounds for a reason: to convey information. Noise carries no information with it generally. The sound of a car passing by is important, but it is simply making noise as a result of friction. The noise it makes has no information. It's not an intentional signal being produced by a sentient being."

Pijanowski said society has become more visual and he wants to restore the importance of sound to our experiences. He said psychologists call the broader disconnect Nature Deficient Disorder, and Pijanowski believes that reconnecting with sounds will open doors to reconnecting with nature - something he views as important to being environmentally conscious.

"If we disconnect with the sounds of nature, will we continue to respect and sustain nature?" Pijanowski said.

While Pijanowski is eager to develop research projects in soundscape ecology, he acknowledged a few challenges associated with starting a new scientific field.

There is no established vocabulary for the field, and Pijanowski anticipates creating new terminology and has already borrowed from related fields. For example, he uses the terms "biophony" (the sounds created by organisms) and "geophony" (the sounds of non-biological entities such as wind and thunder) from the field of acoustic ecology, which focuses on using natural sounds to create musical compositions.

This new field is able to move forward because computerized sensor technologies are becoming reliable and cost-effective. Soundscape ecology is dependent on sensor technology and custom software. To bolster interest, Pijanowski is making software tools and sound file examples available to help researchers interested in becoming involved in the research.

"It is really difficult to find people who think the same way since it's such a new field," Pijanowski said. "There are really only a handful of us so far. But we believe in the science and hope to attract others who will make significant contributions."

Those others will come from a wide array of fields. Pijanowski said he'll work with researchers in spatial ecology, land-use planning, conversation biology, bioacoustics, cognitive psychology, informatics and acoustic engineering, to name a few.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Bryan Pijanowski, 765-496-2215, bpijanow@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>