Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Science of Yellow Snow

20.06.2013
New research from wildlife ecologists at Michigan Technological University indicates that white-tailed deer may be making the soil in their preferred winter homes unfit to grow the very trees that protect them there.

Bryan Murray, a PhD candidate at Michigan Tech, and two faculty members, Professor Christopher Webster and Assistant Professor Joseph Bump, studied the effects on soil of the nitrogen-rich waste that white-tailed deer leave among stands of eastern hemlock, which are among their favorite wintering grounds in the harsh, snowy climate of northern Michigan. Webster and Bump are on the faculty of Michigan Tech’s School of Forest Resources and Environmental Science.

They compared eastern hemlock stands where deer congregated to stands where deer were fenced out and found a strong relationship between the amount of soil nitrogen from the deer’s waste products and the kinds of plants that flourished there. Their research results were reported online in the journal Ecology, published by the Ecological Society of America.

“Altering the nitrogen availability in a hemlock stand may affect its ability to continue functioning as a deeryard by changing the types of plants that grow there,” said Murray, first author on the journal article titled “Broadening the ecological context of ungulate-ecosystem interactions: the importance of space, seasonality, and nitrogen.” For example, he said, “high inputs of nitrogen may hasten the transition of hemlock stands to hardwood species that provide scant winter cover.”

During cold northern winters, deer seek out stands of evergreens with dense crowns, such as eastern hemlock, northern white cedar and balsam fir. Such stands of trees are known as “deeryards.” They are thought to provide refuge from deep snow and blustery winds and to help deer hide from predators, Murray explained.

Deer instinctively seek deeryards, but their choice of location is knowledge passed from mother to fawn. Thus deeryards that are traditional favorites can harbor 100 deer or more per square mile, creating hotspots of high-nitrogen-content waste.

Long ago, before logging enabled the white-tailed deer to move further and further north and before the deer population explosion more recently experienced, the ecosystem stayed balanced because there were plenty of deeryards and fewer deer. Now more deer are crowding into less winter cover, shifting the dynamic balance of nature.

The Michigan Tech research demonstrates that the relationship of deer to their habitat is more complex than just the plants they eat, Webster said. “Our hope is that by better understanding the links between habitat use and spatial patterning of resources and plants in survivng hemlock stands we can identify sustainable management strategies for this critical resource.”

“It was fascinating to discover such complex interactions, which have implications for sustainable management, in a seemingly simple ecosystem,” Murray added.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Bryan Murray
bdmurray@mtu.edu; 740-497-6296

Bryan Murray | Newswise
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>