Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Science of Yellow Snow

20.06.2013
New research from wildlife ecologists at Michigan Technological University indicates that white-tailed deer may be making the soil in their preferred winter homes unfit to grow the very trees that protect them there.

Bryan Murray, a PhD candidate at Michigan Tech, and two faculty members, Professor Christopher Webster and Assistant Professor Joseph Bump, studied the effects on soil of the nitrogen-rich waste that white-tailed deer leave among stands of eastern hemlock, which are among their favorite wintering grounds in the harsh, snowy climate of northern Michigan. Webster and Bump are on the faculty of Michigan Tech’s School of Forest Resources and Environmental Science.

They compared eastern hemlock stands where deer congregated to stands where deer were fenced out and found a strong relationship between the amount of soil nitrogen from the deer’s waste products and the kinds of plants that flourished there. Their research results were reported online in the journal Ecology, published by the Ecological Society of America.

“Altering the nitrogen availability in a hemlock stand may affect its ability to continue functioning as a deeryard by changing the types of plants that grow there,” said Murray, first author on the journal article titled “Broadening the ecological context of ungulate-ecosystem interactions: the importance of space, seasonality, and nitrogen.” For example, he said, “high inputs of nitrogen may hasten the transition of hemlock stands to hardwood species that provide scant winter cover.”

During cold northern winters, deer seek out stands of evergreens with dense crowns, such as eastern hemlock, northern white cedar and balsam fir. Such stands of trees are known as “deeryards.” They are thought to provide refuge from deep snow and blustery winds and to help deer hide from predators, Murray explained.

Deer instinctively seek deeryards, but their choice of location is knowledge passed from mother to fawn. Thus deeryards that are traditional favorites can harbor 100 deer or more per square mile, creating hotspots of high-nitrogen-content waste.

Long ago, before logging enabled the white-tailed deer to move further and further north and before the deer population explosion more recently experienced, the ecosystem stayed balanced because there were plenty of deeryards and fewer deer. Now more deer are crowding into less winter cover, shifting the dynamic balance of nature.

The Michigan Tech research demonstrates that the relationship of deer to their habitat is more complex than just the plants they eat, Webster said. “Our hope is that by better understanding the links between habitat use and spatial patterning of resources and plants in survivng hemlock stands we can identify sustainable management strategies for this critical resource.”

“It was fascinating to discover such complex interactions, which have implications for sustainable management, in a seemingly simple ecosystem,” Murray added.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Bryan Murray
bdmurray@mtu.edu; 740-497-6296

Bryan Murray | Newswise
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>