Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rules of thumb for climate change turned upside down

15.09.2014

Based on models and observations, climate scientists have devised a simplified formula to describe one of the consequences of climate change: regions already marked by droughts will continue to dry out in the future climate. Regions that already have a moist climate will experience additional rainfall. In short: dry gets drier; wet gets wetter (DDWW).

However, this formula is less universally valid than previously assumed. This was demonstrated by a team of ETH climate researchers led by Peter Greve, lead author of a study recently published in Nature Geoscience. Traditional analyses use metrics that can comprehensively describe climate characteristics above the ocean, but is problematic over land.

While this fact was mentioned in said studies, scientific and public discourse has overlooked this aspect so far. In their new study, the ETH researchers in the group headed by Sonia Seneviratne's, professor for land-climate dynamics, take into account the specific climatic properties of land surfaces, where the amount of available water is limited when compared with the ocean.

In their analysis, the climate scientists made use of measured data compiled solely on land, such as rainfall, actual evaporation and potential evaporation. The data derived from various sources was combined by Greve and his co-authors – this allowed them to extract trends in terms of a region's humidity and dryness. Furthermore, the researchers compared data from between 1948 and 1968 and 1984 to 2004.

... more about:
»Climate »ETH »Geoscience »Humidity »dryness »evaporation

Half of the surface areas show divergence

The evaluation shows no obvious trend towards a drier or wetter climate across three-quarters of the land are. There are solid trends for the remaining quarter. However, only half of this surface area follows the DDWW principle, i.e. one-eighth of the total landmass, while the trends seem to contradict this rule over the other half.

Some regions which should have become wetter according to the simple DDWW formula have actually become drier in the past – this includes parts of the Amazon, Central America, tropical Africa and Asia. On the other hand, there are dry areas that have become wetter: parts of Patagonia, central Australia and the Midwestern United States.

Nevertheless, the 'wet gets wetter' rule is largely confirmed for the Eastern United States, Northern Australia and northern Eurasia. 'Dry gets drier' also corresponds to indications in the Sahel region, the Arabian Peninsula and parts of Central Asia and Australia.

However, the DDWW principle does still applies to the oceans. "Our results emphasise how we should not overly rely on simplifying principles to asses past developments in dryness and humidity," Greve explains. This can be misleading, as it cannot do justice to the complexity of the underlying systems.

###

Further reading

Greve P, Orlowsky B, Müller B, Sheffield J, Reichstein M, Seneviratne SI. Global assessment of trends in wetting and drying over land. Nature Geoscience, Advanced Online Publication 14th September 2014. DOI: 10.1038/ngeo2247

Peter Greve | ETH Zürich
Further information:
http://www.ethz.ch/index_EN

Further reports about: Climate ETH Geoscience Humidity dryness evaporation

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>