Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Round Goby invade Great Lakes

A potential threat to several endangered native species

Canadian scientists uncover alarming invasion of round goby into Great Lakes tributaries: impact on endangered fishes likely to be serious

A team of scientists from the University of Toronto, the Ontario Ministry of Natural Resources and the University of Guelph has identified a drastic invasion of round goby into many Great Lakes tributaries, including several areas of the Thames, Sydenham, Ausable and Grand Rivers. A number of the affected areas are known as "species-at-risk" hot spots.

"This invasion poses many potential threats for native species of fish and mussels," says Mark Poos, a PhD Candidate in U of T's Department of Ecology and Evolutionary Biology. Poos is lead author of the study published recently in the international journal Biological Invasions. Up to 89 per cent of fish species and 17 per cent of mussel species are either known or suspected to be affected by the goby invasion. Of particular concern is the impact on species that have a conservation designation, including such endangered species as the small eastern sand darter fish and mussels such as the wavy rayed lampmussel.

The Great Lakes and its tributaries are Canada's most diverse aquatic ecosystems, but are also the most fragile, notes Poos. Several of these rivers hold species found nowhere else in Canada, including 11 endangered species and two threatened species. Furthermore, the round goby, an aggressive ground-feeder, is a threat to three globally rare species: the rayed bean, northern riffleshell and snuffbox mussels.

Round gobies entered the St. Clair River in 1990 likely through ballast water from ocean-going ships. Despite over 15 years of potential invasion through natural dispersal from the Great Lakes into tributaries, the round goby threat did not manifest itself until now. "It was previously thought that these high-diversity areas were immune to invasion. This study shows that this is likely not the case," says Poos. He advises anglers to be watchful for round goby and if they catch one: do not release it back into the water. Other tips to prevent the spread of round goby include not releasing live bait into the water, draining your boat before leaving any water access and never transferring fish from one location to another. If people do catch round goby they should report the capture to

A photo of a round goby is at
(Photo: Yavno)
Mark Poos
Department of Ecology & Evolutionary Biology
University of Toronto
Kim Luke
Communications, Arts & Science
University of Toronto

Kim Luke | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>