Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Round Goby invade Great Lakes

13.08.2009
A potential threat to several endangered native species

Canadian scientists uncover alarming invasion of round goby into Great Lakes tributaries: impact on endangered fishes likely to be serious

A team of scientists from the University of Toronto, the Ontario Ministry of Natural Resources and the University of Guelph has identified a drastic invasion of round goby into many Great Lakes tributaries, including several areas of the Thames, Sydenham, Ausable and Grand Rivers. A number of the affected areas are known as "species-at-risk" hot spots.

"This invasion poses many potential threats for native species of fish and mussels," says Mark Poos, a PhD Candidate in U of T's Department of Ecology and Evolutionary Biology. Poos is lead author of the study published recently in the international journal Biological Invasions. Up to 89 per cent of fish species and 17 per cent of mussel species are either known or suspected to be affected by the goby invasion. Of particular concern is the impact on species that have a conservation designation, including such endangered species as the small eastern sand darter fish and mussels such as the wavy rayed lampmussel.

The Great Lakes and its tributaries are Canada's most diverse aquatic ecosystems, but are also the most fragile, notes Poos. Several of these rivers hold species found nowhere else in Canada, including 11 endangered species and two threatened species. Furthermore, the round goby, an aggressive ground-feeder, is a threat to three globally rare species: the rayed bean, northern riffleshell and snuffbox mussels.

Round gobies entered the St. Clair River in 1990 likely through ballast water from ocean-going ships. Despite over 15 years of potential invasion through natural dispersal from the Great Lakes into tributaries, the round goby threat did not manifest itself until now. "It was previously thought that these high-diversity areas were immune to invasion. This study shows that this is likely not the case," says Poos. He advises anglers to be watchful for round goby and if they catch one: do not release it back into the water. Other tips to prevent the spread of round goby include not releasing live bait into the water, draining your boat before leaving any water access and never transferring fish from one location to another. If people do catch round goby they should report the capture to www.invadingspecies.com.

A photo of a round goby is at
http://www.artsci.utoronto.ca/main/images/round-goby.jpg/view
(Photo: Yavno)
MEDIA CONTACT:
Mark Poos
Department of Ecology & Evolutionary Biology
University of Toronto
647-883-3039
mark.poos@utoronto.ca
Kim Luke
Communications, Arts & Science
University of Toronto
416-978-4352
kim.luke@utoronto.ca

Kim Luke | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>