Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Robot System to Test 10,000 Chemicals for Toxicity

14.03.2011
In cooperation with the U.S. Environmental Protection Agency and the U.S. Food and Drug Administration

Several federal agencies, including the National Institutes of Health, today unveiled a new high-speed robot screening system that will test 10,000 different chemicals for potential toxicity. The system marks the beginning of a new phase of an ongoing collaboration, referred to as Tox21, that is working to protect human health by improving how chemicals are tested in the United States.

The robot system, which is located at the NIH Chemical Genomics Center (NCGC) in Rockville, Md., was purchased as part of the Tox21 collaboration. Tox21 was established in 2008 between the National Institute of Environmental Health Sciences National Toxicology Program (NTP), the National Human Genome Research Institute (NHGRI), and the U.S. Environmental Protection Agency (EPA), with the addition of the U.S. Food and Drug Administration (FDA) in 2010. Tox21 merges existing agency resources (research, funding, and testing tools) to develop ways to more effectively predict how chemicals will affect human health and the environment.

The 10,000 chemicals screened by the robot system include compounds found in industrial and consumer products, food additives, and drugs. A thorough analysis and prioritization process from more than 200 public databases of chemicals and drugs used in the United States and abroad was conducted to select the initial 10,000 chemicals for testing. Testing results will provide information useful for evaluating if these chemicals have the potential to disrupt human body processes enough to lead to adverse health effects.

“Tox21 has used robots to screen chemicals since 2008, but this new robotic system is dedicated to screening a much larger compound library,” said NHGRI Director Eric Green, M.D., Ph.D. The director of the NCGC at NHGRI, Christopher Austin, M.D., added “The Tox21 collaboration will transform our understanding of toxicology with the ability to test in a day what would take one year for a person to do by hand.”

"The addition of this new robot system will allow the National Toxicology Program to advance its mission of testing chemicals smarter, better, and faster,” said Linda Birnbaum, Ph.D., NIEHS and NTP director. “We will be able to more quickly provide information about potentially dangerous substances to health and regulatory decision makers, and others, so they can make informed decisions to protect public health.”

Tox21 has already screened more than 2,500 chemicals for potential toxicity, using robots and other innovative chemical screening technologies.

"Understanding the molecular basis of hazard is fundamental to the protection of human health and the environment,” said Paul Anastas, Ph.D., assistant administrator of the EPA Office of Research and Development. “Tox21 allows us to obtain deeper understanding and more powerful insights, faster than ever before."

“This partnership builds upon FDA’s commitment to developing new methods to evaluate the toxicity of the substances that we regulate,” said Janet Woodcock, M.D., director of the FDA Center for Drug Evaluation and Research.

For b-roll clips from the NCGC facility, see http://www.genome.gov/27543670.

For more information about Tox 21, visit http://ntp.niehs.nih.gov/index.cfm?objectid=06002ADB-F1F6-975E-73B25B4E3F2A41CB.

The NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit www.niehs.nih.gov. Subscribe to one or more of the NIEHS news lists (www.niehs.nih.gov/news/releases/newslist/index.cfm) to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

The NTP is an interagency program established in 1978. The program was created as a cooperative effort to coordinate toxicology testing programs within the federal government, strengthen the science base in toxicology, develop and validate improved testing methods, and provide information about potentially toxic chemicals to health, regulatory, and research agencies, scientific and medical communities, and the public. The NTP is headquartered at the NIEHS. For more information about the NTP, visit http://ntp.niehs.nih.gov.

The National Human Genome Research Institute is part of the National Institutes of Health. For more about NHGRI, visit www.genome.gov.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov

Robin Mackar | Newswise Science News
Further information:
http://www.nih.gov
http://www.genome.gov

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>