Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising Ocean Acidification Leads to Anxiety in Fish

05.12.2013
Study shows acidity levels projected by the end of the century results in behavioral changes that could impact feeding, fisheries

A new research study combining marine physiology, neuroscience, pharmacology, and behavioral psychology has revealed a surprising outcome from increases of carbon dioxide uptake in the oceans: anxious fish.


Researchers tracked the movements of fish in highly acidic waters, represented above in a movement "heatmap."

A growing base of scientific evidence has shown that the absorption of human-produced carbon dioxide into the world’s oceans is causing surface waters to decline in pH, causing a rise in acidity. This ocean acidification is known to disrupt the growth of shells and skeletons of certain marine animals but other consequences such as behavioral impacts have been largely unknown.

In a study published in the journal Proceedings of the Royal Society B (Biological Sciences), scientists at Scripps Institution of Oceanography at UC San Diego and MacEwan University in Edmonton, Canada, have shown for the first time that rising acidity levels increase anxiety in juvenile rockfish, an important commercial species in California. Using a camera-based tracking software system, the researchers compared a control group of rockfish kept in normal seawater to another group in waters with elevated acidity levels matching those projected for the end of the century.

They measured each group’s preference to swim in light or dark areas of a testing tank, which is a known test for anxiety in fish. The researchers found out that normal juvenile rockfish continuously moved between the light and dark areas of the tank. However, experiments have shown that fish administered with an anxiety-inducing drug (anxiogenic) prefer the darker area and seldom venture into the light. Hence, dark-preference is indicative of increased anxiety in juvenile rockfish.

Next, the researchers found that rockfish exposed to acidified ocean conditions for one week also preferred the dark area of the tank, indicating they were significantly more anxious than their normal seawater counterparts. Rockfish exposed to acidified ocean conditions remained anxious even one week after being placed in seawater with normal carbon dioxide levels. Only after the twelfth day in normal seawater did the anxious fish behave like the control group and resumed normal behavior.

The researchers say the anxiety is traced to the fish’s sensory systems, and specifically “GABAA” (neural gamma-aminobutyric acid type A) receptors, which are also involved in human anxiety levels. Exposure to acidified water leads to changes in the concentrations of ions in the blood (especially chloride and bicarbonate), which reverses the flux of ions through the GABAA receptors. The end result is a change in neuronal activity that is reflected in the altered behavioral responses described in this study.

“These results are novel and thought-provoking,” said Martín Tresguerres, a Scripps marine biologist and study coauthor, “because they reveal a potential negative effect of ocean acidification on fish behavior that can possibly affect normal population dynamics and maybe even affect fisheries.”

Tresguerres says anxious behavior is a concern for juvenile rockfish because they live in highly dynamic environments such as kelp forests and drifting kelp paddies that offer variable lighting and shading conditions.

“If the behavior that we observed in the lab applies to the wild during ocean acidification conditions, it could mean that juvenile rockfish may spend more time in the shaded areas instead of exploring around,” said Tresguerres. “This would have negative implications due to reduced time foraging for food, or alterations in dispersal behavior, among others.”

Alteration of GABAA receptor function in fish exposed to ocean acidification was originally described by Phil Munday (James Cook University, Australia), Göran Nilsson (University of Oslo) and collaborators, who found that ocean acidification impaired olfaction in tropical clown fish. The study by Hamilton, Holcombe, and Tresguerres adds anxiety behavior to the list of biological functions that are susceptible to future ocean acidification, and it is the first to describe effects of ocean acidification on the physiology and behavior of Californian fish.

“Behavioral neuroscience in fish is a relatively unexplored field, but we do know that fish are capable of many complicated cognitive tasks of learning and memory. Increased anxiety in rockfish could have a detrimental impact on many aspects of their daily functioning,” said Trevor James Hamilton, a neurobiologist at MacEwan University and coauthor of the study.

Tresguerres noted that laboratory tests cannot fully model the steady progression of acidity levels that will be seen in the wild over years and decades. “Nonetheless, our results suggest that ocean acidification may affect an important aspect of fish behavior.”

In addition to Tresguerres and Hamilton, Adam Holcombe of MacEwan University coauthored the study.

The National Science Foundation, UC San Diego Academic Senate, Scripps Institution of Oceanography, The Alfred P. Sloan Foundation, MacEwan Research Office, Arts and Science, and Student Enrichment Fund supported the research.

About Scripps Institution of Oceanography Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of about 1,400 and annual expenditures of approximately $170 million from federal, state, and private sources. Scripps operates robotic networks and one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 425,000 visitors each year. Learn more at scripps.ucsd.edu.

Mario Aguilera | EurekAlert!
Further information:
http://scripps.ucsd.edu
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>