Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching together in the Himalayas

12.07.2011
The Max Planck Society will agree on a scientific cooperation with the Ugyen Wangchuck Institute for Conservation and Environment in Bhutan on July 29th.

The Department of Migration and Immuno-Ecology, headed by Martin Wikelski at the Department in Radolfzell is intensifying the exchange between the scientists in joint research projects, in order to gain new insights into the high-altitude migration of various species in the Himalayas.

Bhutan, the small Buddhist country with an enormously abundant flora and fauna, is a transit area and hibernation site for a large number or rare species. Its climate ranges from sub-tropic regions to a moderate climate and on to alpine regions. Three quarters of the country is forested, half of which is a protected nature conservation area, i.e. a national park or completely protected nature reserves.

The special relationship that the Bhutanese have with nature, and for whom its protection and their own personal existence go hand in hand, lies in the fact that the Himalayan forest and countryside form the "source" of their lives - "the source of life blood“, as Nawang Norbu, Director of the Ugyen Wangchuck Institute for Conservation and Environment explains.

Nawang Norbu is a doctoral student at the International Max Planck Research School for Organismal Biology at the University of Constance and the Max Planck Institute for Ornithology.

The Ugyen Wangchuck Institute for Conservation and Environment, founded in 2004 and named after the first Bhutanese king, strives as a centre of excellence in south-east Asia to promote the research and scientific insight into the areas of ecology in support of the environment and its conservation. Field research courses in the country, scientific exchange and international cooperation are to help solve the urgent problems of global, climatic change, which also have consequences for the fantastic biodiversity in Bhutan.

The Max Planck Institute for Ornithology will be working together with the Ugyen Wangchuck Institute for Conservation and Environment initially for three years in scientific exchange and in joint projects.

The scientists of the Department for Migration and Immuno-Ecology at the Department in Radolfzell are investigating global animal migration.

Why animals undertake this often dangerous migration and how they manage to get from one place to the other and survive this, and how one can preserve the global phenomenon of animal migration, are the central questions. The researchers find answers to these questions by fitting single individuals with biologgers and GPS transmitters that send movement patterns via satellite. The data thus obtained is collected and analysed in the "Movebank" of an international database.

In joint projects, the scientists at the Max Planck Institute for Ornithology and their Bhutanese colleagues would now like to find out in fieldwork, what the main environmental influence is that the high-altitude migration of some of the species is subject to - these species often covering a difference in altitude of several thousand metres and even living quite often at a height of 5,000 m above sea-level.

Here, the researchers are also confronted with the challenge of developing new radio-telemetry techniques which fulfil the specific conditions of a very mountainous region. By taking particularly rare animals as an example, such as the endangered black-necked crane that overwinters in Bhutan, the scientists want to take more exact measures for protecting certain migration corridors, by analysing ecological data and movement patterns and subsequently helping to preserve this phenomenon of animal migration.

Leonore Apitz | Max-Planck-Institut
Further information:
http://www.orn.mpg.de
http://www.uwice.gov.bt/
http://www.mpg.de/987944/ornithologie_radolfzell?section=eb-evb-g

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>