Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers link jellyfish, other small sea creatures to large-scale ocean mixing

03.08.2009
New mechanism shows how swimming animals affect the marine environment

The ocean's smallest swimming animals, such as jellyfish, can have a huge impact on large-scale ocean mixing, researchers have discovered.

"The perspective we usually take is how the ocean--by its currents, temperature, and chemistry--is affecting animals," says John Dabiri, a Caltech bioengineer who, along with Caltech graduate student Kakani Katija, discovered the new mechanism. "But there have been increasing suggestions that the inverse is also important, how the animals themselves, via swimming, might impact the ocean environment."

Dabiri's and Katija's findings show this inverse to be true, and are published in the July 30 issue of the journal Nature.

"Results from this study will change some of our long-held conceptions about mixing processes in the oceans," says David Garrison, director of NSF's biological oceanography program, which funded the research.

Scientists have increasingly been thinking about how and whether the animals in the ocean might play a role in larger-scale ocean mixing, says Dabiri, the process by which various layers of water interact with one another to distribute heat, nutrients and gasses throughout the oceans.

He says that oceanographers had previously dismissed the idea that animals might have a significant effect on ocean mixing, believing that the viscosity of water would cancel out any turbulence created, especially by small planktonic, or drifting, animals.

But Dabiri and Katija thought there might be a mechanism that had been overlooked, a mechanism they call Darwinian mixing, because it was first discovered and described by Darwin's grandson.

"Darwin's grandson discovered a mechanism for mixing similar in principle to the idea of drafting in aerodynamics," Dabiri explains. "In this mechanism, an individual organism literally drags the surrounding water with it as it goes."

Using this idea as their basis, Dabiri and Katija performed mathematical simulations of what might happen if many small animals all moved at the same time, in the same direction.

Each day, for example, billions of tiny krill and copepods migrate hundreds of meters from the depths of the ocean toward the surface.

Darwin's mechanism would suggest that they drag some of the colder, heavier bottom water up with them toward warmer, lighter water at the top. This would create instability, and eventually, the water would flip, mixing itself as it went.

The researchers found that the water's viscosity enhances Darwin's mechanism, and that the effects are magnified with very small animals like krill and copepods.

"It's like a human swimming through honey," Dabiri explains. "What happens is that even more fluid ends up being carried by a copepod, relatively speaking, than would be carried by a whale."

To verify the findings from their simulations, the scientists traveled to the island of Palau, where they studied animal-led transport of water--otherwise known as induced drift--among jellyfish.

Their jellyfish experiments involved putting fluorescent dye in the water in front of the jellies, then watching what happened to that dye and to the water that took up the dye as the jellyfish swam.

Rather than being left behind the jellyfish, or dissipated in turbulent eddies, the dye travelled right along with them, following for long distances.

The findings verified that swimming animals are capable of carrying bottom water with them as they migrate upward, and that the movement indeed creates an inversion that results in ocean mixing.

After a series of calculations, Dabiri and Katija were able to estimate the impact of this biogenic ocean mixing.

"There are enough of these animals in the ocean," Dabiri says, "that the global power input from this process is as much as a trillion watts of energy, comparable to that of wind forcing and tidal forcing."

While these numbers are estimates, they are likely to be conservative estimates, Dabiri says. "They were based on the fluid transport induced by individual animals swimming in isolation."

In the ocean, these individual contributions to fluid transport may interact with one another, and amplify how far ocean waters can be pulled upward.

In addition, says Dabiri, scientists have yet to consider the effects of such factors as fecal pellets and marine snow (falling organic debris), which pull surface water along as they drift downward.

"This may have an impact on carbon sequestration on the ocean floor," says Dabiri. "It's something we need to look at."

Dabiri says the next major question is how these effects can be incorporated into computer models of global ocean circulation. Such models are important for simulations of global climate change scenarios.

The research was also supported by the Office of Naval Research, the Department of Defense's National Science and Engineering Graduate Fellowship, and the Charles Lee Powell Foundation.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>