Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers investigate impacts of climate change on rare tropical plants

07.12.2012
Research led by the University of York has found that the impacts of climate change on rare plants in tropical mountains will vary considerably from site to site and from species to species.
While some species will react to climate change by moving upslope, others will move downslope, driven by changes in seasonality and water availability. The researchers believe that this predicted variation, together with the long-term isolation and relative climatic stability of the mountains, may shed light on historical processes behind current patterns of biodiversity.

The study, published in the journal Ecography, focussed on the Eastern Arc Mountains of Tanzania and Kenya, home to some of the oldest and most biodiverse habitats on Earth. Thousands of plant and animal species live in this chain of increasingly fragmented patches of forest, woodland and grassland, many hundreds of which are found nowhere else.

The mountains are home to two of the species in the BBC's top ten new species of the decade: the grey-faced sengi (or elephant shrew) and the Kipunji monkey – the first new genus of monkey to be discovered since the 1920s.

In addition to being crucial for biodiversity conservation, the value of the mountains is increasingly being realised as important to the national development of Tanzania, providing food and fibres, clean water and climate stability.

The researchers used regionally downscaled climate models based on forecasts from the Max Planck Institute (Hamburg, Germany), combined with plant specimen data from Missouri Botanical Garden (St. Louis, USA), to show how predicted climate change could impact rare plant distributions differentially across the Eastern Arc Mountains.

Lead author Dr Phil Platts, from the University of York's Environment Department, said: "We explored the hypothesis that mountain plants will move upslope in response to climate change and found that, conversely, some species are predicted to tend downslope, despite warmer annual conditions, driven by changes in seasonality and water availability."

Although patterns of change are predicted to be complex, the authors note that their findings link with theories of past ecosystem stability.

Dr Platts said: "We considered the possibility that plants might migrate rapidly to keep pace with 21st century climate change, and found that sites with many rare species are characterised by climates significantly more likely to remain accessible to those plants in the future. This fits with the idea that similar processes in the past underlie the patterns of biodiversity and endemism (organisms unique to a certain region) that we observe today: during glacial-interglacial cycles, old evolutionary lines were able to maintain populations in sites such as the Eastern Arc, while facing extinction elsewhere."

Professor Neil Burgess, co-author and Chief Scientist at the UNEP World Conservation Monitoring Centre, added a cautionary note: "For many organisms, effective dispersal has been massively curtailed by human activity, and so their future persistence is far from certain. Especially on lower slopes, climate-induced migrations will be hampered by fragmentation and degradation of the habitat mosaic."

The researchers warn of the problems of using larger-scale, global climate models to assess localised impacts of climate change. They say that two thirds of the modelled plant species are predicted to respond in different directions in different parts of their ranges, exemplifying the need for a regional focus in climate change impact assessment.

"Conservation planners, and those charged more broadly with developing climate adaption policy, are advised to take caution in inferring local patterns of change from zoomed perspectives of broad-scale models," said Dr Platts.

The study emphasises the importance of seasonality and moisture, rather than altitude and mean temperature, for determining the impacts of climate change on mountain habitats in tropical regions.

Co-author Roy Gereau, from the Missouri Botanical Garden's Africa and Madagascar Department, said: "This study demonstrates the enormous potential of carefully curated herbarium data, combined with climatological information, to elucidate fine-scale patterns of species distribution and their differential changes over time."

Future work will investigate a wide range of climate models and emissions scenarios, as well as DNA sequencing of selected plant species.

Co-author Dr Rob Marchant, from York's Environment Department, said: "What is clear from the current study is that effective conservation must operate at a landscape level, taking into account the spatial variation in how ecosystems and people have responded to previous episodes of rapid change."

Caron Lett | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht The European pet trade is jeopardising the survival of rare reptile species
13.07.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>