Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers investigate impacts of climate change on rare tropical plants

07.12.2012
Research led by the University of York has found that the impacts of climate change on rare plants in tropical mountains will vary considerably from site to site and from species to species.
While some species will react to climate change by moving upslope, others will move downslope, driven by changes in seasonality and water availability. The researchers believe that this predicted variation, together with the long-term isolation and relative climatic stability of the mountains, may shed light on historical processes behind current patterns of biodiversity.

The study, published in the journal Ecography, focussed on the Eastern Arc Mountains of Tanzania and Kenya, home to some of the oldest and most biodiverse habitats on Earth. Thousands of plant and animal species live in this chain of increasingly fragmented patches of forest, woodland and grassland, many hundreds of which are found nowhere else.

The mountains are home to two of the species in the BBC's top ten new species of the decade: the grey-faced sengi (or elephant shrew) and the Kipunji monkey – the first new genus of monkey to be discovered since the 1920s.

In addition to being crucial for biodiversity conservation, the value of the mountains is increasingly being realised as important to the national development of Tanzania, providing food and fibres, clean water and climate stability.

The researchers used regionally downscaled climate models based on forecasts from the Max Planck Institute (Hamburg, Germany), combined with plant specimen data from Missouri Botanical Garden (St. Louis, USA), to show how predicted climate change could impact rare plant distributions differentially across the Eastern Arc Mountains.

Lead author Dr Phil Platts, from the University of York's Environment Department, said: "We explored the hypothesis that mountain plants will move upslope in response to climate change and found that, conversely, some species are predicted to tend downslope, despite warmer annual conditions, driven by changes in seasonality and water availability."

Although patterns of change are predicted to be complex, the authors note that their findings link with theories of past ecosystem stability.

Dr Platts said: "We considered the possibility that plants might migrate rapidly to keep pace with 21st century climate change, and found that sites with many rare species are characterised by climates significantly more likely to remain accessible to those plants in the future. This fits with the idea that similar processes in the past underlie the patterns of biodiversity and endemism (organisms unique to a certain region) that we observe today: during glacial-interglacial cycles, old evolutionary lines were able to maintain populations in sites such as the Eastern Arc, while facing extinction elsewhere."

Professor Neil Burgess, co-author and Chief Scientist at the UNEP World Conservation Monitoring Centre, added a cautionary note: "For many organisms, effective dispersal has been massively curtailed by human activity, and so their future persistence is far from certain. Especially on lower slopes, climate-induced migrations will be hampered by fragmentation and degradation of the habitat mosaic."

The researchers warn of the problems of using larger-scale, global climate models to assess localised impacts of climate change. They say that two thirds of the modelled plant species are predicted to respond in different directions in different parts of their ranges, exemplifying the need for a regional focus in climate change impact assessment.

"Conservation planners, and those charged more broadly with developing climate adaption policy, are advised to take caution in inferring local patterns of change from zoomed perspectives of broad-scale models," said Dr Platts.

The study emphasises the importance of seasonality and moisture, rather than altitude and mean temperature, for determining the impacts of climate change on mountain habitats in tropical regions.

Co-author Roy Gereau, from the Missouri Botanical Garden's Africa and Madagascar Department, said: "This study demonstrates the enormous potential of carefully curated herbarium data, combined with climatological information, to elucidate fine-scale patterns of species distribution and their differential changes over time."

Future work will investigate a wide range of climate models and emissions scenarios, as well as DNA sequencing of selected plant species.

Co-author Dr Rob Marchant, from York's Environment Department, said: "What is clear from the current study is that effective conservation must operate at a landscape level, taking into account the spatial variation in how ecosystems and people have responded to previous episodes of rapid change."

Caron Lett | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>