Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Examine Role of Soil Patterns in Dam Restoration

05.12.2008
Looking at the site today, it’s easy to forget that a dam and pond stood for 43 years on the University of Wisconsin-Madison’s Franbrook Farm Research Station in southwestern Wisconsin. All traces of the structure are gone, and acres of plants, both native and weedy, now carpet the floor of the former basin.

Nevertheless, memories of the dam remain, and by digging into the soils of the basin, UW-Madison researchers are now unearthing them. Writing in a special issue (December) of Restoration Ecology, they report the discovery of two superimposed patterns of soil properties that chronicle distinct stages in the basin’s history: its decades of submersion, and its emptying when the dam was breached and removed.

“In our analysis, we were able to pick up those different soil patterns, which was pretty exciting,” says soil science professor Nick Balster, who led the study with doctoral candidate Ana Wells and landscape architecture professor John Harrington. “We could see the chemical and physical patterns that were created both by the inundation (of the land) and by the draining.”

Fascinating as those traces of the past are, however, what they mean for the future is the real question, Balster says. After seeding the basin with prairie species, the scientists are now waiting to see if the soil patterns affect the growth and distribution of the plants, and their ability to stand up against weedy, invasive competitors.

“By doing this research, we’re asking the question, ‘How much do soils matter in the restoration of these basins?’” Balster says. “As people who love to study soil we’re going to say, ‘A lot! Soils likely drive the whole thing.’ But as scientists, we don’t know yet.”

Answering that question is becoming more and more pressing. During the past three decades, hundreds of dams nationwide have reached the end of their lives, forcing dam owners to make costly repairs or — increasingly — to remove the structures. With some 3,800 dams to its name — or as many as 10,000, if small, unregulated structures are counted — Wisconsin leads the nation in total dams and has pulled more than 130. States such as California, Pennsylvania and Tennessee have taken out scores of dams as well.

The trend toward removal rather than repair has been driven in part by anglers and river enthusiasts, who justifiably welcome the return the free-flowing rivers and cold-water streams. But the outcome for the once-flooded lands is less certain. Many reports suggest they become havens for aggressive, invading plants such as reed canary grass, which has already consumed hundreds of thousands of acres in Wisconsin and other states.

The researchers’ work at Franbrook Farm, where the Beers Dam was removed in 2003, has now begun to yield some intriguing clues as to why this might be. For one, the scientists found fundamental differences in nutrient levels and physical structure between the knee-deep sediments that were deposited over the dam’s lifetime and the original soils buried beneath. Most striking, they say, is how uniform the spatial composition of the sediments is when compared to the patchy structure of buried soils. And this lack of chemical and physical variability might be one reason why weeds tend to thrive.

“Because you don’t have the patterns of heterogeneity that allow diverse plant communities to establish, invasive species can come in and move quickly through the area,” says Harrington.

At the same time, the sediments also contained definite gradients in density, moisture and other factors, which were laid down when the dam was breached. Finer sediments, for instance, were picked up by the rushing waters and carried closer to the spot where the dam once stood, while heavier, coarser particles tended to move less and settle farther out.

These gradients in particle size also dictate how some nutrients are distributed on the landscape, says Balster. For example, the team found higher concentrations of phosphorus, which binds preferentially to fine particles, closer to the dam‘s former location than farther away.

The scientists’ next goal is to figure out what all this means for their prairie restoration — which isn’t to say they’re rooting necessarily for the native plants.

”If we wanted to, with the expertise on our team, we could likely achieve a restoration of this site, by, say, removing the sediments,” says Balster. “But we’re interested in studying the drivers for restoration. We want to understand the process both above and belowground.”

The research was supported by the Franbrook Farm Foundation in cooperation with the UW-Madison College of Agricultural and Life Sciences and the state of Wisconsin’s Non-Point Source Pollution Project.

Madeline Fisher | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>