Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Examine Role of Soil Patterns in Dam Restoration

05.12.2008
Looking at the site today, it’s easy to forget that a dam and pond stood for 43 years on the University of Wisconsin-Madison’s Franbrook Farm Research Station in southwestern Wisconsin. All traces of the structure are gone, and acres of plants, both native and weedy, now carpet the floor of the former basin.

Nevertheless, memories of the dam remain, and by digging into the soils of the basin, UW-Madison researchers are now unearthing them. Writing in a special issue (December) of Restoration Ecology, they report the discovery of two superimposed patterns of soil properties that chronicle distinct stages in the basin’s history: its decades of submersion, and its emptying when the dam was breached and removed.

“In our analysis, we were able to pick up those different soil patterns, which was pretty exciting,” says soil science professor Nick Balster, who led the study with doctoral candidate Ana Wells and landscape architecture professor John Harrington. “We could see the chemical and physical patterns that were created both by the inundation (of the land) and by the draining.”

Fascinating as those traces of the past are, however, what they mean for the future is the real question, Balster says. After seeding the basin with prairie species, the scientists are now waiting to see if the soil patterns affect the growth and distribution of the plants, and their ability to stand up against weedy, invasive competitors.

“By doing this research, we’re asking the question, ‘How much do soils matter in the restoration of these basins?’” Balster says. “As people who love to study soil we’re going to say, ‘A lot! Soils likely drive the whole thing.’ But as scientists, we don’t know yet.”

Answering that question is becoming more and more pressing. During the past three decades, hundreds of dams nationwide have reached the end of their lives, forcing dam owners to make costly repairs or — increasingly — to remove the structures. With some 3,800 dams to its name — or as many as 10,000, if small, unregulated structures are counted — Wisconsin leads the nation in total dams and has pulled more than 130. States such as California, Pennsylvania and Tennessee have taken out scores of dams as well.

The trend toward removal rather than repair has been driven in part by anglers and river enthusiasts, who justifiably welcome the return the free-flowing rivers and cold-water streams. But the outcome for the once-flooded lands is less certain. Many reports suggest they become havens for aggressive, invading plants such as reed canary grass, which has already consumed hundreds of thousands of acres in Wisconsin and other states.

The researchers’ work at Franbrook Farm, where the Beers Dam was removed in 2003, has now begun to yield some intriguing clues as to why this might be. For one, the scientists found fundamental differences in nutrient levels and physical structure between the knee-deep sediments that were deposited over the dam’s lifetime and the original soils buried beneath. Most striking, they say, is how uniform the spatial composition of the sediments is when compared to the patchy structure of buried soils. And this lack of chemical and physical variability might be one reason why weeds tend to thrive.

“Because you don’t have the patterns of heterogeneity that allow diverse plant communities to establish, invasive species can come in and move quickly through the area,” says Harrington.

At the same time, the sediments also contained definite gradients in density, moisture and other factors, which were laid down when the dam was breached. Finer sediments, for instance, were picked up by the rushing waters and carried closer to the spot where the dam once stood, while heavier, coarser particles tended to move less and settle farther out.

These gradients in particle size also dictate how some nutrients are distributed on the landscape, says Balster. For example, the team found higher concentrations of phosphorus, which binds preferentially to fine particles, closer to the dam‘s former location than farther away.

The scientists’ next goal is to figure out what all this means for their prairie restoration — which isn’t to say they’re rooting necessarily for the native plants.

”If we wanted to, with the expertise on our team, we could likely achieve a restoration of this site, by, say, removing the sediments,” says Balster. “But we’re interested in studying the drivers for restoration. We want to understand the process both above and belowground.”

The research was supported by the Franbrook Farm Foundation in cooperation with the UW-Madison College of Agricultural and Life Sciences and the state of Wisconsin’s Non-Point Source Pollution Project.

Madeline Fisher | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>