Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Unravels Mystery of Sea Turtles’ ‘Lost Years’

07.03.2014

Jeanette Wyneken, Ph.D., associate professor of biological science at Florida Atlantic University, and Kate Mansfield, Ph.D., a co-investigator at the University of Central Florida, are the first to successfully track neonate sea turtles in the Atlantic Ocean waters during what had previously been called their “lost years.” Findings from the study appear today in the journal Proceeding of the Royal Society B.

The “lost years” refer to the time after turtles hatch and head out to sea until they are seen again upon returning to near-shore waters as large juveniles. The time at sea is often called the “lost years” because not much has been known about where the young turtles go and how they interact with their oceanic environment, until now.


Photo credit: Jim Abernethy

A neonate sea turtle with tracking device attached to its shell makes its way in Atlantic waters.

With small, non-invasive, solar-powered satellite transmitters attached to the turtles’ shells, Wyneken and the team were able to track 17 neonate loggerhead sea turtles for periods ranging from 27 to 220 days and for distances ranging from 124 miles to 2,672 miles.

“Prior to tagging these threatened sea turtles, all we knew about this part of their life’s journey came from one turtle that had been followed for three days,” Wyneken said. “From the time they leave our shores, we don’t hear anything about them until they are found near the Canary Islands. Those waters are a bit like nursery school for them, as they stay for about four to eight years. There’s a whole lot that happens crossing the Atlantic that we knew nothing about.”

Along with Wyneken and Mansfield, Warren P. Porter, Ph.D., from the University of Wisconsin Madison, and Jiangang Luo, from the University of Miami, found that some of their results challenge previously held beliefs.

While the turtles remain in oceanic waters off the Continental Shelf, the study found that little loggerhead turtles sought the surface of the water as predicted. But they do not necessarily remain within the major currents associated with the North Atlantic Subtropical Gyre. It was historically thought that loggerhead turtles hatching from Florida’s east coast complete a long, developmental migration in a large circle around the Atlantic entrained in these currents. But the team’s data suggest that turtles may drop out of these currents into the middle of the Atlantic or the Sargasso Sea.

The team also found that the turtles mostly stayed at the sea surface, where they were exposed to the sun’s energy, and the turtles’ shells registered more heat than anticipated (as recorded by sensors in the satellite tags), leading the team to consider a new hypothesis about why the turtles seek refuge in Sargassum, a type of seaweed found on the surface of the water in the deep ocean. Sargassum is a habitat long associated with young sea turtles.

“We propose that young turtles remain at the sea surface to gain a thermal benefit,” Mansfield said. “This makes sense because the turtles are cold blooded animals. By remaining at the sea surface, and by associating with Sargassum habitat, turtles gain a thermal refuge of sorts that may help enhance growth and feeding rates, among other physiological benefits.”

Wyneken and Mansfield are currently working under grants from NOAA, Florida Sea Turtle License Plate fund, Save Our Seas Foundation, and several individual donors to conduct further work on the sea turtle “lost years.”

“Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use,” said Wyneken. “This allows us to reexamine the sea turtle ‘lost years’ paradigms.”

For more information, contact Jeanette Wyneken at 561-297-0146 or jwyneken@fau.edu.
-FAU-

About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University, with an annual economic impact of $6.3 billion, serves more than 30,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida. FAU’s world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of three signature themes – marine and coastal issues, biotechnology and contemporary societal challenges – which provide opportunities for faculty and students to build upon FAU’s existing strengths in research and scholarship. For more information, visit www.fau.edu

Paige Garrido | newswise

Further reports about: Atlantic Sargasso Sea Sargassum Subtropical neonate sea turtle satellite turtles

More articles from Ecology, The Environment and Conservation:

nachricht Seabird SOS
01.09.2015 | University of California - Santa Barbara

nachricht Northern bald ibises fit for their journey to Tuscany
21.08.2015 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

How to get rid of a satellite after its retirement

02.09.2015 | Physics and Astronomy

Expanded CNC programming software for operations planning, training and sales

02.09.2015 | Trade Fair News

Orang-utan females prefer cheek-padded males

02.09.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>