Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researcher Discovers Plankton Adjusts to Changing Ocean Temperatures

Imagine trying to swim through a pool of honey. Because of their small size, this is what swimming in water is like for tiny marine plankton. So, it was often assumed they would be easy prey, especially in the dense viscosity of colder waters, but that is not necessarily so.

Texas Tech Associate Professor and Whitacre Endowed Chair in Mechanical Engineering Jian Sheng, along with biologists Brad Gemmell and Edward Buskey from the University of Texas Marine Science Institute, have discovered new information that explains how these tiny organisms overcome this disadvantage.

Their paper, titled “A compensatory escape mechanism at low Reynolds number” was published in the current issue of Proceeding of the National Academy of Sciences.

“The purpose of the study was in trying to determine the effects of climate change at the very base of the food chain,” Sheng said.

As one of the most abundant animal groups on the planet, many species, including many commercially important fish species, rely on planktonic copepod nauplii at some point during their life cycle. Understanding the ability of these animals to respond to changes in the environment could have direct implications into understanding the future health of our oceans.

By independently varying temperature and viscosity, Sheng recorded their movements with 3-D high speed holographic techniques developed by the Sheng lab at Texas Tech.

“At 3,000 frames per second, it was like tracking a racecar through a microscope,” Sheng said. “We were able to determine that the plankton adapted to changes in viscosity by altering the rhythm of its pulsing appendage.”

The response, built-in to its natural muscle fiber, was only triggered by changes in temperature, Sheng said. It could not compensate for changes in viscosity due to environmental pollution, such as algae blooms or oil spills.

Supporting Information
Jian Sheng, associate professor and Whitacre Endowed Chair in Mechanical Engineering, Whitacre College of Engineering, Texas Tech University,

(806) 742-3563, or

Jian Sheng | Newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>