Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research is ensuring stormwater systems are designed for the future

24.04.2012
Whether the weather is cold or hot, rainy or not, research is ensuring stormwater systems are designed for the future

In a world of changing weather and rainfall patterns, engineers face challenges when designing stormwater management systems.

A Kansas State University team is researching how climate change is affecting rainfall and weather patterns throughout Kansas to help with future adaptation and mitigation strategies. The research team, led by Stacy Hutchinson, associate professor of biological and agricultural engineering, is updating rainfall distribution data to ensure current stormwater management systems can handle future weather changes.

"We are looking at how the state can minimize risk by developing a better understanding of past weather variability while looking forward at the variability expected with future climate change -- whether it is farm production systems or stormwater management," Hutchinson said.

Collaborators on the project include Shawn Hutchinson, associate professor of geography; Aavudai Anandhi Swamy, research assistant professor of agronomy; and Vahid Rahmani, doctoral student in biological and agricultural engineering, Iran. Rahmani is researching Kansas rainfall data and recently received a first-place award at the K-State Research Forum for his oral presentation "Intense rainfall events distribution pattern in the state of Kansas."

"Our research involves understanding how climate change and land cover change -- which is the conversion of natural prairie land and agricultural land to urban and suburban land uses -- affect the potential for flooding," Hutchinson said. "It's where the variability of reality meets the built engineered world."

When engineers design stormwater management systems -- such as terraces and grass waterways in crop fields or storm sewers with underground pipes that transport road runoff to the nearest body of water -- these systems are usually designed to handle a specific storm. In the Manhattan area, natural systems such as grassed waterways and terraces are designed to handle slightly more than 3.5 inches of rain in 24 hours. This rainfall event is expected to happen once every 10 years.

Issues arise because the National Weather Service has not updated rainfall distribution maps for the state of Kansas since 1961. Researchers are updating this data to provide a more accurate weather benchmark that engineers can use when designing stormwater systems. Kansas is ideal for studying climate change and variability because there is more variability across Kansas than from the eastern edge of Kansas to the Atlantic Ocean, Hutchinson said.

To track weather patterns and understand how they have changed, the researchers conducted a similar analysis as the 1961 data. Rahmani studied weather and rainfall data from 24 weather stations in Kansas and 15 stations outside the state. The researchers noticed several trends in the data they collected.

"We're actually seeing more rain across the state, which is kind of surprising because we thought it would be getting drier in the western part of the state," Hutchinson said. "We are getting wetter across the state, but it is much more drastic in the southeast, where we are seeing more high-intensity storms."

The research team found that the 1961 data overestimated the size of storms. That means the currently designed systems are adequate for stormwater management, Hutchinson said, but if the shift in more rain and stronger weather events continues, stormwater systems may need to be redesigned.

"There is discussion among the engineering community about if we need to rethink the size of storm that we design for," Hutchinson said. "The bottom line is that now we have an idea of how weather trends have shifted across the state. This information will be useful to anybody who deals with stormwater runoff -- from the Kansas Department of Transportation to agricultural producers."

The research also is helpful for improving natural stormwater systems, which especially interests Hutchinson. She has studied how to move away from the concrete jungle of pipes and move toward more natural stormwater management systems, such as wetlands, rain gardens and terracing. Challenges exist with natural systems because climate and land cover changes have caused many more peaks and valleys in stormwater runoff -- from times with flooding to drought periods. As a result, natural systems tend to be at capacity in the spring because of increased rainfall and they tend to dry up during the summer when it rains less.

"We needed a better understanding of the variability of the weather so that we could better understand any risks with these natural systems," Hutchinson said. "The amount of water that flows through a pipe is pretty consistent and you can always size a pipe. But the amount of water that can be absorbed by a wetland systems is a lot more in August when it is hot and dry than it is in May."

The researchers are continuing to analyze data and are preparing the research for publication. Their work is funded as part of the $20 million Kansas National Science Foundation Experimental Program to Stimulate Competitive Research project researching global climate change and renewable energy research.

Stacy Hutchinson | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>