Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research suggests delay in autumn colour is caused by increased atmospheric CO2 not global warming

The delay in autumnal leaf coloration and leaf fall in trees is caused by rising levels of carbon dioxide (CO2) in the atmosphere and not by increased global temperatures, suggests a new study by researchers at the University of Southampton.

In recent years, woodland autumnal colour changes have been occurring later in the season whilst re-greening in spring has been occurring earlier. During the last 30 years across Europe, autumnal senescence – the process of plant aging where leaves discolour and then fall – has been delayed by 1.3 - 1.8 days a decade. To date, this has been explained by global warming, with increasing temperatures causing longer growing seasons.

However, while a strong correlation has been observed between increased global temperatures and earlier spring re-greening and bud break, the correlation between autumn leaf colour change and fall and temperature trends in 14 European countries is weak.

Over the 30 years that progressive delays in autumnal senescence have been observed, atmospheric CO2 has risen by 13.5 per cent. Experimental studies show that increased atmospheric CO2 affects plant physiology and function, influencing a myriad of processes.

The Southampton researchers undertook two large forest ecosystem experiments in which poplar (Populus) trees in separate plots were exposed to either ambient or elevated levels of CO2 from planting to maturity. The elevated concentration was at 550 parts per million, proposed as representative of concentrations that may occur in 2050. Changes in the tree canopy were measured by remote sensing.

The trees exposed to elevated CO2 retained their leaves for longer and also experienced a smaller decline in end of season chlorophyll content, resulting in a greener autumn canopy relative to that in ambient CO2.

Professor Gail Taylor, of the University’s School of Biological Sciences, explains:

‘The research data provide compelling evidence in terms of both the leaf and canopy that autumnal senescence in such forest ecosystems will be delayed as the atmospheric concentration of CO2 continues to rise, independent of increased temperatures.

‘Photosynthesis and canopy greenness are maintained for longer in elevated CO2. This is because a CO2 rich atmosphere allows the tree to generate carbon rich compounds that are known to prolong the life of leaves. These compounds may have a positive effect for carbon balance and stress tolerance but may also have a negative effect on the control of dormancy.

‘When trees keep their leaves for longer, they continue to photosynthesise but trees also need to set bud and if they don’t do that, it makes them susceptible to frost and other weather events. A key question now is whether we should be selecting trees which are better adapted to coping with increasing levels of CO2, perhaps considering different varieties and species to plant, rather than using locally sourced seed, as is current practice,’ she continues.

The study also provides the first insight into changes in the genetic make-up of Populus that can account for this shift to delayed senescence. Using cDNA microarrays, the researchers looked at approximately 20,000 genes and have identified a suite of genes that are switched on during delayed senescence in elevated CO2.

Sarah Watts | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>