Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research suggests delay in autumn colour is caused by increased atmospheric CO2 not global warming

15.11.2007
The delay in autumnal leaf coloration and leaf fall in trees is caused by rising levels of carbon dioxide (CO2) in the atmosphere and not by increased global temperatures, suggests a new study by researchers at the University of Southampton.

In recent years, woodland autumnal colour changes have been occurring later in the season whilst re-greening in spring has been occurring earlier. During the last 30 years across Europe, autumnal senescence – the process of plant aging where leaves discolour and then fall – has been delayed by 1.3 - 1.8 days a decade. To date, this has been explained by global warming, with increasing temperatures causing longer growing seasons.

However, while a strong correlation has been observed between increased global temperatures and earlier spring re-greening and bud break, the correlation between autumn leaf colour change and fall and temperature trends in 14 European countries is weak.

Over the 30 years that progressive delays in autumnal senescence have been observed, atmospheric CO2 has risen by 13.5 per cent. Experimental studies show that increased atmospheric CO2 affects plant physiology and function, influencing a myriad of processes.

The Southampton researchers undertook two large forest ecosystem experiments in which poplar (Populus) trees in separate plots were exposed to either ambient or elevated levels of CO2 from planting to maturity. The elevated concentration was at 550 parts per million, proposed as representative of concentrations that may occur in 2050. Changes in the tree canopy were measured by remote sensing.

The trees exposed to elevated CO2 retained their leaves for longer and also experienced a smaller decline in end of season chlorophyll content, resulting in a greener autumn canopy relative to that in ambient CO2.

Professor Gail Taylor, of the University’s School of Biological Sciences, explains:

‘The research data provide compelling evidence in terms of both the leaf and canopy that autumnal senescence in such forest ecosystems will be delayed as the atmospheric concentration of CO2 continues to rise, independent of increased temperatures.

‘Photosynthesis and canopy greenness are maintained for longer in elevated CO2. This is because a CO2 rich atmosphere allows the tree to generate carbon rich compounds that are known to prolong the life of leaves. These compounds may have a positive effect for carbon balance and stress tolerance but may also have a negative effect on the control of dormancy.

‘When trees keep their leaves for longer, they continue to photosynthesise but trees also need to set bud and if they don’t do that, it makes them susceptible to frost and other weather events. A key question now is whether we should be selecting trees which are better adapted to coping with increasing levels of CO2, perhaps considering different varieties and species to plant, rather than using locally sourced seed, as is current practice,’ she continues.

The study also provides the first insight into changes in the genetic make-up of Populus that can account for this shift to delayed senescence. Using cDNA microarrays, the researchers looked at approximately 20,000 genes and have identified a suite of genes that are switched on during delayed senescence in elevated CO2.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>