Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exceptions prove rule of tropical importance in biodiversity

09.11.2007
Even a group of shellfish that appear to violate the overarching pattern of global biodiversity actually follows the same biological rules as other marine organisms, confirming a general theory for the spread of life on Earth.

The University of Chicago's David Jablonski and his colleagues present this finding this week in the advanced online edition of the Proceedings of the National Academy of Sciences.

"There's more of everything in the tropics. More genetic diversity, more diversity in form, more diversity of species," said David Jablonski, the William R. Kenan Jr. Professor in Geophysical Sciences at Chicago. Biologists call this the "latitudinal diversity gradient." They have known about this phenomenon for more than a century, "but there's remarkably little agreement on how it's formed," Jablonski said.

Scientists have offered dozens of different theories to explain the evolutionary underpinnings of the tropics' rich biodiversity. In their Proceedings article, Jablonski, the University of Chicago's Andrew Krug and the University of California, Berkeley's James Valentine present findings that highlight the importance of the tropics in maintaining the entire planet's biodiversity.

Scientists had debated for three decades whether the tropics were a cradle of diversity, where new species originate, or a museum of diversity, where old species persist. Last year Jablonski, Valentine and Kaustuv Roy of the University of California, San Diego, potentially resolved the debate by showing that the tropics is both a cradle and a museum of biodiversity.

But there is a problem nagging at all research on the latitudinal diversity gradient. "So many variables correlate with latitude" - temperature, environmental stability and many other features of the oceans - "that it is tough to separate cause and effect," said Krug, a Research Associate in Geophysical Sciences at Chicago. To do exactly that, the team sifted through a database consisting of 4,600 species of bivalves that occurred in more than 200 locations worldwide.

The research focused on bivalves because of their rich fossil record. "They're known from the shallowest intertidal zone to the deepest of the deep sea," Jablonski said of the bivalves, a group that includes clams, scallops and oysters. "They're known in every latitude, from the north polar ocean to the Antarctic."

The vast majority of bivalve groups show the standard pattern: a peak of diversity in the tropics, tailing off into less diversity in the higher latitudes. "We found one major group that didn't do that. We call that a contrarian group," Jablonski said. That group, called the Anomalodesmata and dubbed the Anomalos by the Chicago-Berkeley team, displayed a striking diversity pattern. Contrary to virtually all other marine life, Anomalo diversity peaked in the mid-latitudes of both hemispheres, but dipped in the tropics.

"We knew we had to take a closer look at these guys," Jablonski said. "We had to see how they fit into the bigger picture, how they got into this strange state. They could've shown a whole new evolutionary dynamic." But they didn't, which actually excited the scientists even more.

"We found out that they do follow the same rules, that they are an exception that proves the rule," Jablonski said. "This was really exciting: science is always about the search for rules, generalizations that can explain nature in new ways." Krug agreed: "The results of the research were a bit surprising, as general rules governing natural systems can be hard to come by."

The origin of new Anomalo lineages was concentrated in the temperate zones, coinciding with their peak diversity. The coincidence between peak diversity and prolific evolution was seen in that group's relatives, too, and because both fell in the tropics, a normal diversity resulted.

"You could imagine a situation in which all their evolutionary action was still in the tropics, but they just had so much extinction there that by default their diversity peak was in the temperate zone," Jablonski said. "But if you know where the diversity peak is, you can predict where evolution is the most prolific."

"Thanks to the fossil record, we can show that their weird diversity pattern is because of a failure to diversify in the tropics and not because of supercharged evolution in the temperate zones. Our rule came through with flying colors."

These results show how important the tropics are for life on Earth: "The tropics are the engine of biodiversity. As the tropics are undermined or deteriorate for a whole variety of reasons, that actually undercuts evolutionary production on a global scale," Jablonski said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>