Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exceptions prove rule of tropical importance in biodiversity

09.11.2007
Even a group of shellfish that appear to violate the overarching pattern of global biodiversity actually follows the same biological rules as other marine organisms, confirming a general theory for the spread of life on Earth.

The University of Chicago's David Jablonski and his colleagues present this finding this week in the advanced online edition of the Proceedings of the National Academy of Sciences.

"There's more of everything in the tropics. More genetic diversity, more diversity in form, more diversity of species," said David Jablonski, the William R. Kenan Jr. Professor in Geophysical Sciences at Chicago. Biologists call this the "latitudinal diversity gradient." They have known about this phenomenon for more than a century, "but there's remarkably little agreement on how it's formed," Jablonski said.

Scientists have offered dozens of different theories to explain the evolutionary underpinnings of the tropics' rich biodiversity. In their Proceedings article, Jablonski, the University of Chicago's Andrew Krug and the University of California, Berkeley's James Valentine present findings that highlight the importance of the tropics in maintaining the entire planet's biodiversity.

Scientists had debated for three decades whether the tropics were a cradle of diversity, where new species originate, or a museum of diversity, where old species persist. Last year Jablonski, Valentine and Kaustuv Roy of the University of California, San Diego, potentially resolved the debate by showing that the tropics is both a cradle and a museum of biodiversity.

But there is a problem nagging at all research on the latitudinal diversity gradient. "So many variables correlate with latitude" - temperature, environmental stability and many other features of the oceans - "that it is tough to separate cause and effect," said Krug, a Research Associate in Geophysical Sciences at Chicago. To do exactly that, the team sifted through a database consisting of 4,600 species of bivalves that occurred in more than 200 locations worldwide.

The research focused on bivalves because of their rich fossil record. "They're known from the shallowest intertidal zone to the deepest of the deep sea," Jablonski said of the bivalves, a group that includes clams, scallops and oysters. "They're known in every latitude, from the north polar ocean to the Antarctic."

The vast majority of bivalve groups show the standard pattern: a peak of diversity in the tropics, tailing off into less diversity in the higher latitudes. "We found one major group that didn't do that. We call that a contrarian group," Jablonski said. That group, called the Anomalodesmata and dubbed the Anomalos by the Chicago-Berkeley team, displayed a striking diversity pattern. Contrary to virtually all other marine life, Anomalo diversity peaked in the mid-latitudes of both hemispheres, but dipped in the tropics.

"We knew we had to take a closer look at these guys," Jablonski said. "We had to see how they fit into the bigger picture, how they got into this strange state. They could've shown a whole new evolutionary dynamic." But they didn't, which actually excited the scientists even more.

"We found out that they do follow the same rules, that they are an exception that proves the rule," Jablonski said. "This was really exciting: science is always about the search for rules, generalizations that can explain nature in new ways." Krug agreed: "The results of the research were a bit surprising, as general rules governing natural systems can be hard to come by."

The origin of new Anomalo lineages was concentrated in the temperate zones, coinciding with their peak diversity. The coincidence between peak diversity and prolific evolution was seen in that group's relatives, too, and because both fell in the tropics, a normal diversity resulted.

"You could imagine a situation in which all their evolutionary action was still in the tropics, but they just had so much extinction there that by default their diversity peak was in the temperate zone," Jablonski said. "But if you know where the diversity peak is, you can predict where evolution is the most prolific."

"Thanks to the fossil record, we can show that their weird diversity pattern is because of a failure to diversify in the tropics and not because of supercharged evolution in the temperate zones. Our rule came through with flying colors."

These results show how important the tropics are for life on Earth: "The tropics are the engine of biodiversity. As the tropics are undermined or deteriorate for a whole variety of reasons, that actually undercuts evolutionary production on a global scale," Jablonski said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>