Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like it or not, uncertainty and climate change go hand-in-hand

29.10.2007
Despite decades of ever more-exacting science projecting Earth's warming climate, there remains large uncertainty about just how much warming will actually occur.

Two University of Washington scientists believe the uncertainty remains so high because the climate system itself is very sensitive to a variety of factors, such as increased greenhouse gases or a higher concentration of atmospheric particles that reflect sunlight back into space.

In essence, the scientists found that the more likely it is that conditions will cause climate to warm, the more uncertainty exists about how much warming there will be.

"Uncertainty and sensitivity have to go hand in hand. They're inextricable," said Gerard Roe, a UW associate professor of Earth and space sciences. "We're used to systems in which reducing the uncertainty in the physics means reducing the uncertainty in the response by about the same proportion. But that's not how climate change works."

Roe and Marcia Baker, a UW professor emeritus of Earth and space sciences and of atmospheric sciences, have devised and tested a theory they believe can help climate modelers and observers understand the range of probabilities from various factors, or feedbacks, involved in climate change. The theory is contained in a paper published in the Oct. 26 edition of Science.

In political polling, as the same questions are asked of more and more people the uncertainty, expressed as margin of error, declines substantially and the poll becomes a clearer snapshot of public opinion at that time. But it turns out that with climate, additional research does not substantially reduce the uncertainty.

The equation devised by Roe and Baker helps modelers understand built-in uncertainties so that the researchers can get meaningful results after running a climate model just a few times, rather than having to run it several thousand times and adjust various climate factors each time.

"It's a yardstick against which one can test climate models," Roe said.

Scientists have projected that simply doubling carbon dioxide in the atmosphere from pre-Industrial Revolution levels would increase global mean temperature by about 2.2 degrees Fahrenheit. However, that projection does not take into account climate feedbacks – physical processes in the climate system that amplify or subdue the response. Those feedbacks would raise temperature even more, as much as another 5 degrees F according to the most likely projection. One example of a feedback is that a warmer atmosphere holds more water vapor, which in itself is a greenhouse gas. The increased water vapor then amplifies the effect on temperature caused by the original increase in carbon dioxide.

"Sensitivity to carbon dioxide concentration is just one measure of climate change, but it is the standard measure," Roe said.

Before the Industrial Revolution began in the late 1700s, atmospheric carbon dioxide was at a concentration of about 280 parts per million. Today it is about 380 parts per million and estimates are that it will reach 560 to 1,000 parts per million by the end of the century.

The question is what all that added carbon dioxide will do to the planet's temperature. The new equation can help provide an answer, since it links the probability of warming with uncertainty about the physical processes that affect how much warming will occur, Roe said.

"The kicker is that small uncertainties in the physical processes are amplified into large uncertainties in the climate response, and there is nothing we can do about that," he said.

While the new equation will help scientists quickly see the most likely impacts, it also shows that far more extreme temperature changes – perhaps 15 degrees or more in the global mean – are possible, though not probable. That same result also was reported in previous studies that used thousands of computer simulations, and the new equation shows the extreme possibilities are fundamental to the nature of the climate system.

Much will depend on what happens to emissions of carbon dioxide and other greenhouse gases in the future. Since they can remain in the atmosphere for decades, even a slight decrease in emissions is unlikely to do more than stabilize overall concentrations, Roe said.

"If all we do is stabilize concentrations, then we will still be risking the highest temperature change shown in the models," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>