Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas plus ore equals new industry

26.10.2007
The Arctic has huge resources of natural gas and iron ore. Material-producing industrial clusters in this region could be worth a great deal.

On Norwegian and Russian territory in the Barents Sea lie some of the world’s largest reserves of natural gas, which have been estimated to comprise around 25 percent of total global undiscovered reserves. In the same geographical region huge deposits of iron ore, nickel and chromium lie in the ground.

For about a year they have been working on their own account on a concept based on how these resources could benefit both industry and the nation as a whole.

The effects of coordinating natural gas and iron ore conversion and processing are interesting from environmental, microeconomic and macroeconomic perspectives. Current price trends also suggest that natural gas is becoming more competitive than it used to be, as the prices of coal and coke rise.

Efficient production

The idea is to set up plants to produce sponge iron (processed iron ore), that would be operated in conjunction with a gas-fired power station – with a flue-gas scrubber to reduce CO2 emissions to zero. The power station would be run on the gas by-products from iron production, such as hydrogen, where natural gas would replace coal or coke as fuel.

“This would dramatically reduce CO2 emissions, and the surplus CO2 would be so pure that it could be injected directly back into the oil or gas reservoir,” says Jack Ødegaard at SINTEF, who has been the initiative’s driving force and spokesman for almost a year.

The scientists believe that an industrial cluster of this sort would give us highly efficient iron and steel production together with efficient CO2 capture. Such a cluster would also - with ancillary flows of natural gas – be expanded to include the production of other products and materials such as hydrogen, carbon black, bioproteins, polymers, silicon, aluminium or titanium.

“One of the most interesting aspects will be if we can locate such industrial cluster close to existing or future natural gas landing terminals and pipelines for CO2 re-injection,” says Ødegaard.

The overarching aim of the concept is environmentally responsible utilisation and processing of natural gas and iron ore deposits in the Arctic, where all the CO2 will be stored, with zero emissions as the ultimate goal

Good timing

Scientists at SINTEF and NTNU now want to look at these possibilities in more detail together with StatoilHydro, LKAB (Luossavaara-Kiirunavaara-Aktiebolag) and other companies. They believe that the timing of a concept like this is right: there is a great demand for materials and energy carriers just now, while there is also a focus on new sustainable industry in regions that need new jobs and a wider range of industry.

The Norwegian government’s inaugural declaration (the Soria Moria Declaration) stated that “a larger proportion of the natural gas produced from the Norwegian continental shelf must be used in Norway for industrial, energy and transport purposes”.

“SINTEF and NTNU believes that this project will be an important start to a goal-oriented, industrially rooted planning process regarding how such an ambition can be filled with specific content,” says Jack Ødegaard.

Project initiatives

Two project initiatives concerning the “where gas meets ore” concept are already under way: the first is a large Gassmaks project, which aims to assemble 10 – 15 industrial partners around a series of studies concerning various industrial cluster models. This is expected to be launched in January 2008 and to last for three years. The other project, which has still to be formally agreed, is a concrete pilot project for direct reduced iron (DRI) production in association with StatoilHydro’s methanol plant at Tjeldbergodden.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>