Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas plus ore equals new industry

26.10.2007
The Arctic has huge resources of natural gas and iron ore. Material-producing industrial clusters in this region could be worth a great deal.

On Norwegian and Russian territory in the Barents Sea lie some of the world’s largest reserves of natural gas, which have been estimated to comprise around 25 percent of total global undiscovered reserves. In the same geographical region huge deposits of iron ore, nickel and chromium lie in the ground.

For about a year they have been working on their own account on a concept based on how these resources could benefit both industry and the nation as a whole.

The effects of coordinating natural gas and iron ore conversion and processing are interesting from environmental, microeconomic and macroeconomic perspectives. Current price trends also suggest that natural gas is becoming more competitive than it used to be, as the prices of coal and coke rise.

Efficient production

The idea is to set up plants to produce sponge iron (processed iron ore), that would be operated in conjunction with a gas-fired power station – with a flue-gas scrubber to reduce CO2 emissions to zero. The power station would be run on the gas by-products from iron production, such as hydrogen, where natural gas would replace coal or coke as fuel.

“This would dramatically reduce CO2 emissions, and the surplus CO2 would be so pure that it could be injected directly back into the oil or gas reservoir,” says Jack Ødegaard at SINTEF, who has been the initiative’s driving force and spokesman for almost a year.

The scientists believe that an industrial cluster of this sort would give us highly efficient iron and steel production together with efficient CO2 capture. Such a cluster would also - with ancillary flows of natural gas – be expanded to include the production of other products and materials such as hydrogen, carbon black, bioproteins, polymers, silicon, aluminium or titanium.

“One of the most interesting aspects will be if we can locate such industrial cluster close to existing or future natural gas landing terminals and pipelines for CO2 re-injection,” says Ødegaard.

The overarching aim of the concept is environmentally responsible utilisation and processing of natural gas and iron ore deposits in the Arctic, where all the CO2 will be stored, with zero emissions as the ultimate goal

Good timing

Scientists at SINTEF and NTNU now want to look at these possibilities in more detail together with StatoilHydro, LKAB (Luossavaara-Kiirunavaara-Aktiebolag) and other companies. They believe that the timing of a concept like this is right: there is a great demand for materials and energy carriers just now, while there is also a focus on new sustainable industry in regions that need new jobs and a wider range of industry.

The Norwegian government’s inaugural declaration (the Soria Moria Declaration) stated that “a larger proportion of the natural gas produced from the Norwegian continental shelf must be used in Norway for industrial, energy and transport purposes”.

“SINTEF and NTNU believes that this project will be an important start to a goal-oriented, industrially rooted planning process regarding how such an ambition can be filled with specific content,” says Jack Ødegaard.

Project initiatives

Two project initiatives concerning the “where gas meets ore” concept are already under way: the first is a large Gassmaks project, which aims to assemble 10 – 15 industrial partners around a series of studies concerning various industrial cluster models. This is expected to be launched in January 2008 and to last for three years. The other project, which has still to be formally agreed, is a concrete pilot project for direct reduced iron (DRI) production in association with StatoilHydro’s methanol plant at Tjeldbergodden.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>