Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Massive California fires consistent with climate change

The catastrophic fires that are sweeping Southern California are consistent with what climate change models have been predicting for years, experts say, and they may be just a prelude to many more such events in the future – as vegetation grows heavier than usual and then ignites during prolonged drought periods.

“This is exactly what we’ve been projecting to happen, both in short-term fire forecasts for this year and the longer term patterns that can be linked to global climate change,” said Ronald Neilson, a professor at Oregon State University and bioclimatologist with the USDA Forest Service.

“You can’t look at one event such as this and say with certainty that it was caused by a changing climate,” said Neilson, who was also a contributor to publications of the Intergovernmental Panel on Climate Change, a co-recipient earlier this month of the 2007 Nobel Peace Prize.

“But things just like this are consistent with what the latest modeling shows,” Neilson said, “and may be another piece of evidence that climate change is a reality, one with serious effects.”

The latest models, Neilson said, suggest that parts of the United States may be experiencing longer-term precipitation patterns – less year-to-year variability, but rather several wet years in a row followed by several that are drier than normal.

“As the planet warms, more water is getting evaporated from the oceans and all that water has to come down somewhere as precipitation,” said Neilson. “That can lead, at times, to heavier vegetation loads popping up and creation of a tremendous fuel load. But the warmth and other climatic forces are also going to create periodic droughts. If you get an ignition source during these periods, the fires can just become explosive.”

The problems can be compounded, Neilson said, by El Niño or La Nina events. A La Niña episode that’s currently under way is probably amplifying the Southern California drought, he said. But when rains return for a period of years, the burned vegetation may inevitably re-grow to very dense levels.

“In the future, catastrophic fires such as those going on now in California may simply be a normal part of the landscape,” said Neilson.

Fire forecast models developed by Neilson’s research group at OSU and the Forest Service rely on several global climate models. When combined, they accurately predicted both the Southern California fires that are happening and the drought that has recently hit parts of the Southeast, including Georgia and Florida, causing crippling water shortages.

In studies released five years ago, Neilson and other OSU researchers predicted that the American West could become both warmer and wetter in the coming century, conditions that would lead to repeated, catastrophic fires larger than any in recent history.

At that time, the scientists suggested that periodic increases in precipitation, in combination with higher temperatures and rising carbon dioxide levels, would spur vegetation growth and add even further to existing fuel loads caused by decades of fire suppression.

Droughts or heat waves, the researchers said in 2002, would then lead to levels of wildfire larger than most observed since European settlement. The projections were based on various “general circulation” models that showed both global warming and precipitation increases during the 21st century.

Ronald Neilson | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>