“This is exactly what we’ve been projecting to happen, both in short-term fire forecasts for this year and the longer term patterns that can be linked to global climate change,” said Ronald Neilson, a professor at Oregon State University and bioclimatologist with the USDA Forest Service.
“You can’t look at one event such as this and say with certainty that it was caused by a changing climate,” said Neilson, who was also a contributor to publications of the Intergovernmental Panel on Climate Change, a co-recipient earlier this month of the 2007 Nobel Peace Prize.
“But things just like this are consistent with what the latest modeling shows,” Neilson said, “and may be another piece of evidence that climate change is a reality, one with serious effects.”
The latest models, Neilson said, suggest that parts of the United States may be experiencing longer-term precipitation patterns – less year-to-year variability, but rather several wet years in a row followed by several that are drier than normal.
“As the planet warms, more water is getting evaporated from the oceans and all that water has to come down somewhere as precipitation,” said Neilson. “That can lead, at times, to heavier vegetation loads popping up and creation of a tremendous fuel load. But the warmth and other climatic forces are also going to create periodic droughts. If you get an ignition source during these periods, the fires can just become explosive.”
The problems can be compounded, Neilson said, by El Niño or La Nina events. A La Niña episode that’s currently under way is probably amplifying the Southern California drought, he said. But when rains return for a period of years, the burned vegetation may inevitably re-grow to very dense levels.
“In the future, catastrophic fires such as those going on now in California may simply be a normal part of the landscape,” said Neilson.
Fire forecast models developed by Neilson’s research group at OSU and the Forest Service rely on several global climate models. When combined, they accurately predicted both the Southern California fires that are happening and the drought that has recently hit parts of the Southeast, including Georgia and Florida, causing crippling water shortages.
In studies released five years ago, Neilson and other OSU researchers predicted that the American West could become both warmer and wetter in the coming century, conditions that would lead to repeated, catastrophic fires larger than any in recent history.
At that time, the scientists suggested that periodic increases in precipitation, in combination with higher temperatures and rising carbon dioxide levels, would spur vegetation growth and add even further to existing fuel loads caused by decades of fire suppression.
Droughts or heat waves, the researchers said in 2002, would then lead to levels of wildfire larger than most observed since European settlement. The projections were based on various “general circulation” models that showed both global warming and precipitation increases during the 21st century.
Ronald Neilson | EurekAlert!
Further information:
http://www.oregonstate.edu
Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel
Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Magnetic nano-imaging on a table top
20.04.2018 | Physics and Astronomy
Start of work for the world's largest electric truck
20.04.2018 | Interdisciplinary Research
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy