Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt professor says harmful byproducts of fossil fuels could be higher in urban areas

24.10.2007
3-year project applies on a large scale a method for tracing sources of nitrate in rainfall

Nitrogen oxides, the noxious byproduct of burning fossil fuels that can return to Earth in rain and snow as harmful nitrate, could taint urban water supplies and roadside waterways more than scientists and regulators realize, according to research published Oct. 20 in the online edition of the journal Environmental Science and Technology.

The three-year study, led by Emily Elliott, a professor of geology and planetary science in the University of Pittsburgh’s School of Arts and Sciences, recommends that urban areas and roadways be specifically monitored for nitrogen deposition. Nitrogen oxides can contribute to a wide variety of environmental and health ills. Nitrate—which forms when exhaust from vehicles and smokestacks oxidizes in the atmosphere—is an important contributor to acid rain and can result in stream and soil acidification, forest decline, and coastal water degradation.

Elliott and her colleagues conducted the first large-scale application of a method for determining the source of atmospheric nitrate on rain and snow samples from 33 precipitation collection sites across the Midwestern and Northeastern United States, including Pennsylvania. The sites belong to the National Atmospheric Deposition Program (NADP), a cooperative of private organizations and U.S. government agencies that analyzes precipitation for chemicals such as nitrogen, sulfur, and mercury from more than 250 sites in the United States, Puerto Rico, and the Virgin Islands.

Although vehicles are the single largest source of nitrogen oxides in this region, the researchers found by analyzing the stable isotope composition of nitrate that the primary source of nitrate in their samples were stationary sources, such as power plants and factories, located hundreds of miles away. Stationary sources pump pollutants high into the atmosphere where they can be transported for long distances before falling to the ground. Vehicle exhaust is released close to the ground and more likely deposited over shorter distances near roadways. Most monitoring sites in the NADP network are deliberately located in relatively rural settings away from urban, industrial, or agricultural centers.

The amount of nitrate pouring over the cities and busy roadways thick with vehicles could be higher than monitoring data at most NADP sites reflect, and it is possible that a significant amount of this atmospheric nitrate finds its way into sensitive water supplies, such as the Ohio River or Chesapeake Bay. In aquatic ecosystems, excess nitrate can promote an overgrowth of oxygen-consuming algae and lead to an oxygen deficiency in the water known as hypoxia. Hypoxia kills marine creatures and creates “dead zones” akin to the lifeless area of the Gulf of Mexico at the mouth of the Mississippi River. Determining the fate of major sources of nitrogen emissions is necessary to develop sound regulatory and mitigation strategies for both air and water quality, Elliott said.

“Our results highlight the need to improve our understanding of the fate of vehicle emissions—one way we can do this is by expanding monitoring networks to include more urban sites,” Elliott said, adding that both vehicle and stationary sources are major contributors to air pollution in the region studied.

Elliott said that future research will further characterize the isotopic ratios of nitrogen oxides from various emission sources and quantify how these values change during transport and with different emission controls. She is looking for industrial partners who can provide samples from smokestacks for analysis. Additionally, Elliott is interested in establishing an urban precipitation monitoring site in Pittsburgh to assess pollution sources that contribute to nitrate deposition in the Pittsburgh region.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>