Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon sink slowdown contributing to rapid growth in atmospheric CO2

23.10.2007
There has been a decline in the efficiency of natural land and ocean sinks which soak up carbon dioxide (CO2) emitted to the atmosphere by human activities, according to findings published this week in the Proceedings of the National Academy of Sciences of the US (PNAS).

The swift increase in atmospheric CO2 is due to faster economic growth coupled with a halt in carbon intensity reductions, in addition to natural sinks removing a smaller proportion of emissions from the air. Carbon intensity is the amount of carbon emitted to produce one dollar of global wealth.

The study’s lead author, Dr Pep Canadell, executive director of the Global Carbon Project, explained “Fifty years ago, for every tonne of CO2 emitted, 600kg were removed by natural sinks. In 2006 only 550kg were removed per tonne and that amount is falling.”

“In addition to the growth of global population and wealth, we now know that significant contributions to the growth of atmospheric CO2 arise from the slow down of natural sinks and the halt to improvements in carbon intensity.”

The rise in growth in atmospheric CO2 is generating climate forcings that are bigger and sooner than expected. By altering the global energy balance, these mechanisms "force" the climate to change.

“There are regional differences in the efficiency of natural sinks. Half of decline in the efficiency of the ocean sink is due to the intensification and poleward movement of the westerly winds in the Southern ocean”, said contributing author Corinne Le Quere of the University of East Anglia.

“The proportion of carbon dioxide remaining in the atmosphere after vegetation and the oceans absorb what they can has escalated over the past 50 years, showing a decrease in the planet’s ability to absorb anthropogenic emissions.” said Dr Canadell.

Dr Raupach, co-chair of the Global Carbon Project, said ”We have found that the earth is losing its restorative capacity to absorb CO2 emissions in the face of the massive increases in emissions over the last half century. The longer we delay reducing emissions, the more restorative capacity will be lost."

The majority of these authors are members of the Intergovernmental Panel on Climate Change which was recently awarded the Nobel Peace Prize 2007.

Pep Canadell | alfa
Further information:
http://www.globalcarbonproject.org/
http://www.pnas.org_cgi_doi_10.1073_pnas.0702737104

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>